Answer:
x+1 , x<-1
x²-bx-4 , -1≤x≤4
1/2 x +a
substitute x=-1 , continuous everywhere
x+1=x²-bx-4 when x=-1
-1+1=-1²-b-4
<h2>1+b-4=0 ⇒ +b-3 ⇒ b=3</h2>
then for :
x²-bx-4=1/2 x +a for x=4
4²-4b-4=1/2x+a
16-4(3)-4=4/2+a
16-12-4-2=a
<h2>a=-2</h2>
the equations will be :
x+1
x²-3x-4
1/2x-2
I hope this help
Answer:
Step-by-step explanation:
Begin the solution by squaring both sides of the given equation. We get:
(3x - 4)^2 = 2x^2 - 2x + 2, or:
9x^2 - 24x + 16 = 2x ^2 - 2x + 2
Combining like terms results in:
7x^2 - 22x + 14 = 0
and the coefficients are a = 7, b = -22, c = 14, so that the discriminant of the quadratic formula, b^2 - 4ac becomes (-22)^2 - 4(7)(14) = 92
According to the quadratic formula, the solutions are
-b ± √discriminant -(-22) ± √92 22 ± √92
x = ------------------------------- = ----------------------- = ------------------------
2a 14 14