Answer:
P(-1, 0); Q(0, -1); R(2, -1).
Step-by-step explanation:
When you reflect coordinates over the y-axis, the y-coordinates do not change, while the signs of the x-coordinates are flipped. You can see the example attached!
And so, after reflecting P'(1, 0), you would get P(-1, 0) because the sign of the x-value is flipped and the y-value does not change.
Q'(0, -1) becomes Q(0, -1) because 0 is neither negative nor positive, and the y-value does not change.
R'(-2, -1) becomes R(2, -1) because the sign of the x-value is flipped to positive and the y-value does not change.
Hope this helps!
Answer:
*44+44468
Step-by-step explanation:
54+85588255)(5(5))55)5)
9514 1404 393
Answer:
3
Step-by-step explanation:
For f(x) = x^3 -2x^2 -7x +5 and x=1/(2-√3), we have ...
f(x) = ((x -2)x -7)x +5
and ...
x = 1/(2-√3) = (2+√3)/(2^2 -3) = 2+√3
Then ...
f(2+√3) = ((2 +√3 -2)(2 +√3) -7)(2 +√3) +5
= (3+2√3 -7)(2+√3) +5
= 2(√3 -2)(√3 +2) +5 = 2(3 -4) +5 = -2 +5
f(1/(2 -√3)) = 3
_____
If you really mean x = (1/2) -√3, then f(x) = (42√3 -3)/8.
B. 51 pounds.
<span>You multiply your weight on Earth (170) and the Alien's weight one Jupiter (120) and divide it by your weight on Jupiter (400).</span>
Answer: No
Explanation:
According to factor theorem, if f(x)=0 then x is a factor of the given function or equation.
As x-1 is a factor
We equate x-1=0
x=1
Substituting in x^5-1, we have 1^5-1 =1-1=0.
Hence, it's a factor.
When coming to x^5+1, it would become 1^5+1=1+1=2
So x-1 isn't a factor of x^5+1.