Answer:
4 hours
Step-by-step explanation:
15 x 4 = 60
$60
Answer:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
Step-by-step explanation:
1) We set up our null and alternative hypothesis as
H0: proportion of fatal bicycle accidents in 2015 was the same for all days of the week
against the claim
Ha: proportion of fatal bicycle accidents in 2015 was not the same for all days of the week
2) the significance level alpha is set at 0.05
3) the test statistic under H0 is
χ²= ∑ (ni - npi)²/ npi
which has an approximate chi square distribution with ( n-1)=7-1= 6 d.f
4) The critical region is χ² ≥ χ² (0.05)6 = 12.59
5) Calculations:
χ²= ∑ (16- 14.28)²/14.28 + (12- 14.28)²/14.28 + (12- 14.28)²/14.28 + (13- 14.28)²/14.28 + (14- 14.28)²/14.28 + (15- 14.28)²/14.28 + (18- 14.28)²/14.28
χ²= 1/14.28 [ 2.938+ 5.1984 +5.1984+1.6384+0.0784 +1.6384+13.84]
χ²= 1/14.28[8.1364]
χ²= 0.569= 0.57
6) Conclusion:
The calculated χ² = 0.57 does not fall in the critical region χ² ≥ 12.59 so we fail to reject the null hypothesis and conclude the proportion of fatal bicycle accidents in 2015 was the same for all days of the week.
b.<u> It is r</u>easonable to conclude that the proportion of fatal bicycle accidents in 2015 was the same for all days of the week
They are in agreement. All of the expressions provided are equivalent. Chris says that 14.6 percent of the world's oranges are grown in Florida. Then, Mary Beth says that 292 out of 2000 oranges are grown in Florida. If we compare the two, 292 is actually 14.6 percent of 2000. So they are saying the same thing. Allison says that 0.146 of the oranges are grown in Florida. 0.146 is actually 14.6 percent as a decimal, so if we change it back into a percent, she is saying that 14.6 percent of oranges are grown in Florida. Sound familiar? They are all in agreement.<span />