Use the compound interest formula.
A = P*(1 +r/n)^(n*t)
where P is the principal, r is the annual rate, n is the number of compoundings per year, and t is the number of years.
For the first investment, ...
A = 208,000*(1 +.08/4)^(4*5) = 309,077.06
For the second investment, ...
A = 218,000*(1 +.07/2)^(2*4) = 287,064.37
Totaling both investments at maturity, Megan has $596,141.43.
Answer:
okie
Step-by-step explanation:
Answer:
Rate in relationship A = (6 - 3)/(8 - 4) = 3/4 = 0.75
For Table A: Rate = (3 - 1.2)/(5 - 2) = 1.8/3 = 0.6
For table B: Rate = (3.5 - 1.4)/(5 - 2) = 2.1/3 = 0.7
For table C: Rate = (4 - 1.6)/(5 - 2) = 2.4/3 = 0.8
For table D: Rate = (2 - 1.5)/(4 - 3) = 0.5/1 = 0.5
Therefore, the correct answer is option C.
It means the same used in a question like this, is 25 as much as 25.