Answer:
(cx)2-(dy) 2
Step-by-step explanation:
Formula a2-b2= (a+b) (a-b)
By given formula
(cx)2 - (dy) 2 = (cx+dy) (cx-dy)
Answer:
<u>a(n)=80*(9/10)^(n-1)</u>
Step-by-step explanation:
I think u r confused
this sequence is geometric not arithmetic
HOw we know that ??
when we get a common difference <u>that must Be equal </u>
d=72-80=-8 not equal to d=64.8-72=-7.2
So it is not arithmetic
but when we get the common ratio that also must <u>be equal </u>
r=72/80=9/10 equal to r=64.8/72=9/10
So it is geometric
By using this equation:
a(n)=a*r^(n-1)
and we have <u>a=80 , r=9/10</u>
Then <u>a(n)=80*(9/10)^(n-1)</u>
<em>I really hope this helps <3</em>
*see attachment below showing the dot plot and box plot created by Tia
Answer:
Dot plot
Step-by-step explanation:
In a dot plot, the temperature of a day is represented by 1 dot. There are 30 dots on the box plot shown in the attachment that was made by Tia.
This dot plot display makes it easier to find how many days had a temperature that is higher than 15°.
Thus, from the dot plot, we have:
2 dots representing 2 days having a temperature of 16°C each
2 days also have daily temperature of 17°C
2 days have temperature of 18°C as well, and
1 day has temperature of 19° C.
Therefore, the number of days that had a temperature above 15°C is 7 days.
So, I came up with something like this. I didn't find the final equation algebraically, but simply "figured it out". And I'm not sure how much "correct" this solution is, but it seems to work.
![f(x)=\sin(\omega(x))\\\\f(\pi^n)=\sin(\omega(\pi^n))=0, n\in\mathbb{N}\\\\\\\sin x=0 \implies x=k\pi,k\in\mathbb{Z}\\\Downarrow\\\omega(\pi^n)=k\pi\\\\\boxed{\omega(x)=k\sqrt[\log_{\pi} x]{x},k\in\mathbb{Z}}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csin%28%5Comega%28x%29%29%5C%5C%5C%5Cf%28%5Cpi%5En%29%3D%5Csin%28%5Comega%28%5Cpi%5En%29%29%3D0%2C%20n%5Cin%5Cmathbb%7BN%7D%5C%5C%5C%5C%5C%5C%5Csin%20x%3D0%20%5Cimplies%20x%3Dk%5Cpi%2Ck%5Cin%5Cmathbb%7BZ%7D%5C%5C%5CDownarrow%5C%5C%5Comega%28%5Cpi%5En%29%3Dk%5Cpi%5C%5C%5C%5C%5Cboxed%7B%5Comega%28x%29%3Dk%5Csqrt%5B%5Clog_%7B%5Cpi%7D%20x%5D%7Bx%7D%2Ck%5Cin%5Cmathbb%7BZ%7D%7D)