Explanation:
The initial concentrations for a mixture :
Acetic acid at equilibrium = 0.15 M
Ethanol at equilibrium = 0.15 M
Ethyl acetate at equilibrium = 0.40 M
Water at equilibrium = 0.40 M

Initially:
0.15 M 0.15 M 0.40 M 0.40 M
At equilibrium
(0.15-x)M (0.15-x) M (0.40+x) M (0.40+x) M
The equilibrium constant is given by expression
![K_c=\frac{[CH_3CO_2C_2H_5][H_2O]}{[CH_3COOH][C_2H_5OH]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3CO_2C_2H_5%5D%5BH_2O%5D%7D%7B%5BCH_3COOH%5D%5BC_2H_5OH%5D%7D)

Solving for x:
x = 0.0333
The equilibrium concentrations for a mixture :
Acetic acid at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethanol at equilibrium = (0.15-x)M = (0.15-0.033) M = 0.117 M
Ethyl acetate at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M
Water at equilibrium = (0.40+x)M = (0.40+0.033) M = 0.433 M
Answer: -
Magnesium reacts very slowly to form magnesium hydroxide and hydrogen gas. The balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
Explanation: -
Chemical symbol of magnesium = Mg
Chemical formula for magnesium hydroxide = Mg(OH)₂
Chemical formula for hydrogen gas = H₂
The other reactant with Mg must be water H₂O.
Thus the balanced chemical equation for the reaction is
Mg + 2H₂O → Mg(OH)₂ + H₂
The number of atoms in one mole is same in both which is 6 x 10^23 ^23 means power 23
The answer would most likely be true.
<span>1. What is the molar mass of gold?
Molar mass is a unit that expresses the mass of a molecule per one mol. The molar mass can be obtained by adding the neutron with the proton of the atoms. Gold has atomic number 79 so the proton is 79. The number of the neutron is 118. Then the molar mass would be: 79 + 118 = </span>197 g/mol<span>
</span><span>2. Calculate the number of moles of gold (Au) in the sample. Show your work.
</span>In this question, you are given the mass of the gold and asked for how many moles the sample has. To find the number of moles you just need to divide the weight by the molar mass.
For 45.39 grams of gold, the number of moles would be:
45.39 / (197g/mol)= 0.23 moles
3. Calculate the number of atoms of gold (Au) in the sample. Show your work.Moles is unit of a number of molecules but 1 mol doesn't represent 1 molecule. The number of atoms can be obtained by multiplying the number of moles with Avogadro number. The calculation would be:
0.23 moles * (6.023 * 10^23 molecules/mol)= 1.387 * 10^23 molecules