The electron configuration that belongs to the atom with the lowest first ionization energy is francium.
<h3>What is ionization energy? </h3>
Ionization energy is defined as the minimum amount of energy required to remove the most loosely electron present in outermost shell.
<h3>Ionization energy across period</h3>
Ionization energy increase as we move from left to right in the period. This can be explained as when we move from left to right along period new electron is added to the same shell which increase the nuclear charge. Hence results int he decrease in size. Due to this decrease in size more energy is required to remove electron from outermost shell.
<h3>Ionization energy along group</h3>
Ionization energy decrease as we move from top to bottom along group. This can be explained as we move from top to bottom new electron is added to new shell. Due to addition of new shell the size of atom increases which results in the decrease in the nuclear charge. Due to this less amount of energy is needed to remove an electron.
Thus, we concluded that the electron configuration that belongs to the atom with the lowest first ionization energy is francium.
learn more about ionization energy:
brainly.com/question/1602374
#SPJ4
Quantum numbers describe values of conserved quantities in the dynamics of a quantum system. In the case of electrons, the quantum numbers can be defined as "the sets of numerical values which give acceptable solutions to the Schrödinger wave equation for the hydrogen atom
<span>294400 cal
The heating of the water will have 3 phases
1. Melting of the ice, the temperature will remain constant at 0 degrees C
2. Heating of water to boiling, the temperature will rise
3. Boiling of water, temperature will remain constant at 100 degrees C
So, let's see how many cal are needed for each phase.
We start with 320 g of ice and 100 g of liquid, both at 0 degrees C. We can ignore the liquid and focus on the ice only. To convert from the solid to the liquid, we need to add the heat of fusion for each gram. So multiply the amount of ice we have by the heat of fusion.
80 cal/g * 320 g = 25600 cal
Now we have 320 g of ice that's been melted into water and the 100 g of water we started with, resulting in 320 + 100 = 420 g of water at 0 degrees C. We need to heat that water to 100 degrees C
420 * 100 = 42000 cal
Finally, we have 420 g of water at the boiling point. We now need to pump in an additional 540 cal/g to boil it all away.
420 g * 540 cal/g = 226800 cal
So the total number of cal used is
25600 cal + 42000 cal + 226800 cal = 294400 cal</span>
I’m pretty sure it’s true