Suppose the integers are n , n+2 , n+4 and n+6.
84=n+(n+2)+(n+4)+(n+6)=4n+12.
Subtract 12 from both ends to get.
72=4n.
Divide both ends by 4 to get.
n=18.
So the integers are: 18 , 20 , 22 , 24.
<span>We want to check how many intersections line A and B have, that is, we want to check how many common solutions do these equations have:
</span>
i) 2x + 2y = 8
ii) x + y = 4
<span>
use equation ii) to write y in terms of x as : y=4-x,
substitute y =4-x in equation i):
</span>2x + 2y = 8
2x + 2(4-x) = 8
<span>2x+8-2x=8
8=8
this is always true, which means the equations have infinitely many common solutions.
Answer: </span><span>There are infinitely many solutions.</span><span>
</span>
This is like the equivalent to a jar with 4 green balls and 6 white balls, where you are picking 3. (The 4 green balls signify the friends from kindergarten.)
You want to solve the probability that the first two balls are green and the third is white.
First draw --> 4 green out of 10 balls --> 4/10 = 2/5
Second draw --> 3 green out of 9 balls --> 3/9 = 1/3
Third draw --> 6 white out of 8 balls --> 6/8 = 3/4
2/5 x 1/3 x 3/4
= 6/60
= 1/10
so the answer is 1/10 (or 10%)
Answer:
Step-by-step explanation:
From the information given, the population is divided into sub groups. Each group would consist of citizens picking a particular choice as the most important problem facing the country. The choices are the different categories. In this case, the null hypothesis would state that the distribution of proportions for all categories is the same in each population. The alternative hypothesis would state that the distributions is different. Therefore, the correct test to use to determine if the distribution of "problem facing this country today" is different between the two different years is
A) Use a chi-square test of homogeneity.
Answer:
A
Step-by-step explanation: