<span>Its going to be the part that has a 90 degree angle so half of the square in the corner.
</span>
So lets get to the problem
<span>165°= 135° +30° </span>
<span>To make it easier I'm going to write the same thing like this </span>
<span>165°= 90° + 45°+30° </span>
<span>Sin165° </span>
<span>= Sin ( 90° + 45°+30° ) </span>
<span>= Cos( 45°+30° )..... (∵ Sin(90 + θ)=cosθ </span>
<span>= Cos45°Cos30° - Sin45°Sin30° </span>
<span>Cos165° </span>
<span>= Cos ( 90° + 45°+30° ) </span>
<span>= -Sin( 45°+30° )..... (∵Cos(90 + θ)=-Sinθ </span>
<span>= Sin45°Cos30° + Cos45°Sin30° </span>
<span>Tan165° </span>
<span>= Tan ( 90° + 45°+30° ) </span>
<span>= -Cot( 45°+30° )..... (∵Cot(90 + θ)=-Tanθ </span>
<span>= -1/tan(45°+30°) </span>
<span>= -[1-tan45°.Tan30°]/[tan45°+Tan30°] </span>
<span>Substitute the above values with the following... These should be memorized </span>
<span>Sin 30° = 1/2 </span>
<span>Cos 30° =[Sqrt(3)]/2 </span>
<span>Tan 30° = 1/[Sqrt(3)] </span>
<span>Sin45°=Cos45°=1/[Sqrt(2)] </span>
<span>Tan 45° = 1</span>
Answer:
15.2 m
Step-by-step explanation:
You need to draw a figure. Start by drawing a horizontal segment approximately 10 cm long; that is the ground. Label the left end point A and the right endpoint B. On the right endpoint, B, go up a short 1 cm vertically. That is 1.5 m, the height of Zaheer. Label that point C. Now from that point draw a horizontal line that ends up above point A. Label that point D. Now go back to point C. Draw a segment up to the left at a 30 deg angle with CD. End the segment vertically above point D. Label that point E. That is the top of the flagpole. Draw a vertical segment down from point E through point D ending at point A. Segment AE is the flagpole. Go back to point C. Move 3 cm to the left on segment CD, and draw a point there and label it F. That is where Zaheer moved to. Now connect point F to point E. That is a 45-deg elevation to point E, the top of the flagpole.
m<EFD = 45 deg
m<EFC = 135 deg
m<FEC = 15 deg
m<ECD = 30 deg
We now use the law of sines to find EC
(sin 15)/10 = (sin 135)/EC
EC = 27.32
Because of the 30-60-90 triangle, ED = EC/2
ED = 13.66
Now we add the height of Zaheer to find AE.
13.66 + 1.5 = 15.16
Answer: 15.2 m