1)
∠BAC = ∠NAC - ∠NAB = 144 - 68 = 76⁰
AB = 370 m
AC = 510 m
To find BC we can use cosine law.
a² = b² + c² -2bc*cos A
|BC|² = |AC|²+|AB|² - 2|AC|*|AB|*cos(∠BAC)
|BC|² = 510²+370² - 2*510*370*cos(∠76⁰) =
|BC| ≈ 553 m
2)
To find ∠ACB, we are going to use law of sine.
sin(∠BAC)/|BC| = sin(∠ACB)/|AB|
sin(76⁰)/553 m = sin(∠ACB)/370 m
sin(∠ACB)=(370*sin(76⁰))/553 =0.6492
∠ACB = 40.48⁰≈ 40⁰
3)
∠BAC = 76⁰
∠ACB = 40⁰
∠CBA = 180-(76+40) = 64⁰
Bearing C from B =360⁰- 64⁰-(180-68) = 184⁰
4)
Shortest distance from A to BC is height (h) from A to BC.
We know that area of the triangle
A= (1/2)|AB|*|AC|* sin(∠BAC) =(1/2)*370*510*sin(76⁰).
Also, area the same triangle
A= (1/2)|BC|*h = (1/2)*553*h.
So, we can write
(1/2)*370*510*sin(76⁰) =(1/2)*553*h
370*510*sin(76⁰) =553*h
h= 370*510*sin(76⁰) / 553= 331 m
h=331 m
<span>f(x) = x</span>² <span>+ 12x + 6 </span>→ y = x² + 12x + 6<span>
Let us convert the standard form into vertex form.
1) Complete the squares. Isolate x</span>² and x terms.
<span>y - 6 = x</span>² + 12x
<span>
2) Create the perfect square trinomial. Whatever number is added on one side must also be added on the other side.
y - 6 + 36 = x</span>² + 12x + 36<span>
y + 30 = (x + 6)</span>²
<span>y = (x + 6)</span>² - 30 ← Vertex form
<span>
To check:
y = (x + 6) (x + 6) - 30
y = x</span>² + 6x + 6x + 36 - 30
<span>y = x</span>² + 12x + 6<span>
The zero that could be added to the given function is 36, -36</span>
Answer:
80 adults must addent to make a complete $1,000
Step-by-step explanation:
You start with the students, $3 for each and 200 of them attend. 3x200=600 dollars in total. Then you would subtract 600 from 1,000. Next you will do the adults, 5x80=400 (The "leftover" cash) $5 for each times 80 adults will be $400 in total.
Answer:
area = 2604 in²
Step-by-step explanation:
area = L x W
area = 42 x 62 = 2604 in²