Answer:
the solution of the system is:
x = 1 and y = 2.
Step-by-step explanation:
I suppose that we want to solve the equation:
-6*x + 6*y = 6
6*x + 3*y = 12
To solve this, we first need to isolate one of the variables in one of the equations.
Let's isolate y in the first equation:
6*y = 6 + 6*x
y = (6 + 6*x)/6
y = 6/6 + (6*x)/6
y = 1 + x
Now we can replace this in the other equation:
6*x + 3*(1 + x) = 12
6*x + 3 + 3*x = 12
9*x + 3 = 12
9*x = 12 - 3 = 9
x = 9/9 = 1
Now that we know that x = 1, we can replace this in the equation "y = 1 + x" to find the value of y.
y = 1 + (1) = 2
Then the solution of the system is:
x = 1 and y = 2.
Answer:
D
Step-by-step explanation:
Answer:
b
Step-by-step explanation:
Answer:
Pilar va a pagar en total por el coche 14209.84€.
Step-by-step explanation:
Pilar ha comprado un coche, da una entrada y lo quiere pagar en 12 meses.
Cada mes va a pagar 600,82€. Como lo quiere pagar en doce meses, luego de finalizado ese tiempo el precio pagado se calcula como:
12 meses* 600,82€ por mes= 7209,84€
Por otro lado, Pilar ha dado al principio una entrada de 7000€. Entonces, el total a pagar por el coche es calculado como:
7000€ + 7209,84€= 14209.84€
<u><em>Pilar va a pagar en total por el coche 14209.84€.</em></u>
Answer:
t = -14
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
Step-by-step explanation:
<u>Step 1: Define</u>
-98 = 7t
<u>Step 2: Solve for </u><em><u>t</u></em>
- Divide 7 on both sides: -14 = t
- Rewrite: t = -14
<u>Step 3: Check</u>
<em>Plug in t into the original equation to verify it's a solution.</em>
- Substitute in <em>t</em>: -98 = 7(-14)
- Multiply: -98 = -98
Here we see that -98 is equal to -98.
∴ t = -14 is the solution to the equation.