1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Orlov [11]
3 years ago
8

Anzelm wants to burn 540 calories while jogging. Jogging burns about 12 calories per minute. When Anzelm goes jogging, he usuall

y plans to stop and rest for about 5 minutes.
Mathematics
1 answer:
kondor19780726 [428]3 years ago
7 0

Answer:he will use 45 minutes to burn 540 calories . he spend a total of 50 minutes ie including 5 minutes of rest.

Step-by-step explanation: 1 minute burns 12 calories

Therefore 540÷12 = 45 minutes plus 5 minutes of rest = 50 minutes.

You might be interested in
Cindy bought 4 packets of onion seeds. Each packet contained 12 seeds. She planted 1 packet of the seeds, and 8 seeds sprouted.
olga55 [171]

Answer:

B because 8 seeds from pack 1. u do 8 times 3 other packs which is 24 So in between 20-30 seeds will sprout

7 0
3 years ago
For each of the following vector fields F , decide whether it is conservative or not by computing curl F . Type in a potential f
Phantasy [73]

The key idea is that, if a vector field is conservative, then it has curl 0. Equivalently, if the curl is not 0, then the field is not conservative. But if we find that the curl is 0, that on its own doesn't mean the field is conservative.

1.

\mathrm{curl}\vec F=\dfrac{\partial(5x+10y)}{\partial x}-\dfrac{\partial(-6x+5y)}{\partial y}=5-5=0

We want to find f such that \nabla f=\vec F. This means

\dfrac{\partial f}{\partial x}=-6x+5y\implies f(x,y)=-3x^2+5xy+g(y)

\dfrac{\partial f}{\partial y}=5x+10y=5x+\dfrac{\mathrm dg}{\mathrm dy}\implies\dfrac{\mathrm dg}{\mathrm dy}=10y\implies g(y)=5y^2+C

\implies\boxed{f(x,y)=-3x^2+5xy+5y^2+C}

so \vec F is conservative.

2.

\mathrm{curl}\vec F=\left(\dfrac{\partial(-2y)}{\partial z}-\dfrac{\partial(1)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x)}{\partial z}-\dfrac{\partial(1)}{\partial z}\right)\vec\jmath+\left(\dfrac{\partial(-2y)}{\partial x}-\dfrac{\partial(-3x)}{\partial y}\right)\vec k=\vec0

Then

\dfrac{\partial f}{\partial x}=-3x\implies f(x,y,z)=-\dfrac32x^2+g(y,z)

\dfrac{\partial f}{\partial y}=-2y=\dfrac{\partial g}{\partial y}\implies g(y,z)=-y^2+h(y)

\dfrac{\partial f}{\partial z}=1=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=z+C

\implies\boxed{f(x,y,z)=-\dfrac32x^2-y^2+z+C}

so \vec F is conservative.

3.

\mathrm{curl}\vec F=\dfrac{\partial(10y-3x\cos y)}{\partial x}-\dfrac{\partial(-\sin y)}{\partial y}=-3\cos y+\cos y=-2\cos y\neq0

so \vec F is not conservative.

4.

\mathrm{curl}\vec F=\left(\dfrac{\partial(5y^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial x}\right)\vec\jmath+\left(\dfrac{\partial(5y^2)}{\partial x}-\dfrac{\partial(-3x^2)}{\partial y}\right)\vec k=\vec0

Then

\dfrac{\partial f}{\partial x}=-3x^2\implies f(x,y,z)=-x^3+g(y,z)

\dfrac{\partial f}{\partial y}=5y^2=\dfrac{\partial g}{\partial y}\implies g(y,z)=\dfrac53y^3+h(z)

\dfrac{\partial f}{\partial z}=5z^2=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=\dfrac53z^3+C

\implies\boxed{f(x,y,z)=-x^3+\dfrac53y^3+\dfrac53z^3+C}

so \vec F is conservative.

4 0
3 years ago
Help with number 6 pleaseeeeeeee
vitfil [10]
SinA=5root3/10
CosA=5/10
TanA=5root3/5=root3
SinC=5/10=1/2=0.5
CosC=5root3/10
Tanc=5/5root3=1/root3
7 0
3 years ago
Si el largo de un rectángulo mide el doble del ancho que es "a", ¿cuál es su área?
rosijanka [135]

Answer:

El área es 2 veces el cuadrado del ancho del rectángulo.

Step-by-step explanation:

El área de un rectángulo viene dado por:

A = a*l

En donde:

a: es el ancho

l: es el largo

Si el largo es el doble del ancho:

l = 2a

Entonces el área es:

A = a*l = a*(2a) = 2a^{2}

Por lo tanto, el área es 2 veces el cuadrado del ancho del rectángulo.

Espero que te sea de utilidad!  

6 0
3 years ago
What is the area of the actual square window
Naily [24]

Answer: 2.25 meters

Step-by-step explanation: 1 in = 2 meters. 0.75 is 75 percent of 1 so the length of the window is 75 percent of 2 which is 1.5. 1.5 squared is 2.25 so the length of the window is 2.25 meters

7 0
1 year ago
Other questions:
  • From the ten books that you've recently bought but not read, you plan to take four with you on vacation. How many different sets
    12·1 answer
  • Perform the indicated operation.(3/a+2) + (4/a-5)
    10·1 answer
  • A rectangle has a length of 15 cm and a perimeter of 72 cm.
    13·2 answers
  • What is 2/5+1/2? i am very stressed out, and i need an answer. plz someone help!
    9·1 answer
  • The price of these item before VAT are as follows. What are the sale price if the VAT is charged at 15%?
    10·2 answers
  • What is the mean temperature for the 10 days?
    14·1 answer
  • Answered
    5·1 answer
  • Local versus absolute extrema. If you recall from single-variable calculus (calculus I), if a function has only one critical poi
    9·1 answer
  • I want to know organic in grade 10<br>​
    11·1 answer
  • Mr Matt spent 1/4 of a day at his office on Monday and 7/10 of a day at the office on Tuesday what fraction of a day did he spen
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!