Answer:
![d = 384,500\,km + (21,500\,km)\cdot \cos \left[\frac{2\pi}{27.3}\cdot (t-1) \right]](https://tex.z-dn.net/?f=d%20%3D%20384%2C500%5C%2Ckm%20%2B%20%2821%2C500%5C%2Ckm%29%5Ccdot%20%5Ccos%20%5Cleft%5B%5Cfrac%7B2%5Cpi%7D%7B27.3%7D%5Ccdot%20%28t-1%29%20%5Cright%5D)
Step-by-step explanation:
The trigonometric model of the distance between Earth and the Moon is:

Where:
- Apogee, measured in kilometers.
- Amplitude, measured in kilometers.
- Angular frequency, measured in radians.
- Phase angle, measured in radians.
- Time, measured in days.
The required information are derived below:






The expression is:
![d = 384,500\,km + (21,500\,km)\cdot \cos \left[\frac{2\pi}{27.3}\cdot (t-1) \right]](https://tex.z-dn.net/?f=d%20%3D%20384%2C500%5C%2Ckm%20%2B%20%2821%2C500%5C%2Ckm%29%5Ccdot%20%5Ccos%20%5Cleft%5B%5Cfrac%7B2%5Cpi%7D%7B27.3%7D%5Ccdot%20%28t-1%29%20%5Cright%5D)