The volume of a triangular pyramid<span> can be found using the </span>formula<span> V = 1/3AH where A = area of the triangle base, and H = height of the </span>pyramid<span> or the distance from the </span>pyramid's<span> base to the apex.</span>
First, do what is in the parentheses. 75 times 50 is 3,750. Divide it by 100 to get 37.5. 10 + 6(37.5) - 1/2. Do the multiplication to get 10 + 225 - 1/2. Now you get 235 - 1/2. Solve to get 234 1/2.
The way to find the area of a triangle is A=

if the base is 3 feet longer then the height we can write it like this B=H+3
now we can add it to our area equation
20=

20=

40=

+3H
10

=

h=3.2ft
Answer:
a) 8π
b) 8/3 π
c) 32/5 π
d) 176/15 π
Step-by-step explanation:
Given lines : y = √x, y = 2, x = 0.
<u>a) The x-axis </u>
using the shell method
y = √x = , x = y^2
h = y^2 , p = y
vol = ( 2π ) 
=
∴ Vol = 8π
<u>b) The line y = 2 ( using the shell method )</u>
p = 2 - y
h = y^2
vol = ( 2π )
= 
= ( 2π ) * [ 2/3 * y^3 - y^4 / 4 ] ²₀
∴ Vol = 8/3 π
<u>c) The y-axis ( using shell method )</u>
h = 2-y = h = 2 - √x
p = x
vol = 
= 
= ( 2π ) [x^2 - 2/5*x^5/2 ]⁴₀
vol = ( 2π ) ( 16/5 ) = 32/5 π
<u>d) The line x = -1 (using shell method )</u>
p = 1 + x
h = 2√x
vol = 
Hence vol = 176/15 π
attached below is the graphical representation of P and h
Answer:
The inequality is 
The greatest length of time Jeremy can rent the jet ski is 5 and Jeremy can rent maximum of 135 minutes.
Step-by-step explanation:
Given: Cost of first hour rent of jet ski is $55
Cost of each additional 15 minutes of jet ski is $10
Jeremy can spend no more than $105
Assuming the number of additional 15-minutes increment be "x"
Jeremy´s total spending would be first hour rental fees and additional charges for each 15-minutes of jet ski.
Lets put up an expression for total spending of Jeremy.

We also know that Jeremy can not spend more than $105
∴ Putting up the total spending of Jeremy in an inequality.

Now solving the inequality to find the greatest number of time Jeremy can rent the jet ski,
⇒ 
Subtracting both side by 55
⇒ 
Dividing both side by 10
⇒
∴ 
Therefore, Jeremy can rent for 
Jeremy can rent maximum of 135 minutes.