Answer:
Step-by-step explanation:
Answer:
(A) - (5)
(B) - (4)
(C) - (1)
(D) - (2)
Step-by-step explanation:
(A) We are given the polynomial (x+4)(x−4)[x−(2−i)][x−(2+i)]
(5) The related polynomial equation has a total of four roots; two roots are complex and two roots are real.
(B) We are given the polynomial (x+i)(x−i)(x−2)³(x−4).
(4) The related polynomial equation has a total of six roots; two roots are complex and one of the remaining real roots has a multiplicity of 3.
(C) We are given the polynomial (x+3)(x−5)(x+2)²
(1) The related polynomial equation has a total of four roots; all four roots are real and one root has a multiplicity of 2.
(D) We are given the polynomial (x+2)²(x+1)²
(2) The related polynomial equation has a total four roots; all four roots are real and two roots have a multiplicity of 2. (Answer)
Answer:
0.281 = 28.1% probability a given player averaged less than 190.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A bowling leagues mean score is 197 with a standard deviation of 12.
This means that 
What is the probability a given player averaged less than 190?
This is the p-value of Z when X = 190.



has a p-value of 0.281.
0.281 = 28.1% probability a given player averaged less than 190.
You are given two equations, solve for one variable in one of the equations. Say you solved for x in the second equation. Then, plug in that value of x in the x of the first equation. Solve this (first) equation for y (as it should become apparent) and you'll get a number value. Plug in this numerical value of y into the y of the second equation. Solve for x in the second equation. And there you have it: (x, y)