Answer:
B) 25
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (-1, -8)
Point (-4, -4)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Evaluate:

Answer:
Step-by-step explanation:
Given equation:
On comparing the equation by ax² + bx + x = 0, We get: a = 1, b = 2 and c = 3
To Find the nature of the roots of the equation firstly we need to find the discriminant of the equation. The expression b²- 4ac is called the discriminant.

- Two Distinct real roots, if b² - 4ac > 0
- Two equal real roots, if b² - 4ac = 0
- No real roots, if b² - 4ac < 0

The discriminant is smaller than 0.
- <u>Hence, Equation has no </u><u>real</u><u> roots (no solution)</u>
Answer:
2,1
Step-by-step explanation:
Answer:
mid point (x,y) = M (18, 24)
let J (- 4, - 2) be ( x1, y1)
L(a,b) be (x2,y2)
using midpoint formula
(x,y) = [(x1+x2)/2, (y1 + y2)/2]
or, (18, 24) = [(-4+a)/2, (-2+b)/2]
comparing corresponding element we get
18 = (-4+a)/2 24 =(-2+b)/2
or 36 = -4+ a or 48 = -2 +b
or a = 40 or b= 50
L(40,50)