Answer:
2698
Step-by-step explanation:
2712-14
Answer: Option 2
Step-by-step explanation:

Is it like this?
y=-4+8
y=4
Is this what you need?
For x^3-11x^2+33x+45 , we can make it an equation so <span>x^3-11x^2+33x+45=0. Next, we can find out if -1 or -3 is a factor. If -1 is a factor, than (x+1) is factorable. Using synthetic division, we get
x^2-12x+45
___ ________________________
x+1 | x^3-11x^2+33x+45
- (x^3+x^2)
_________________________
-12x^2+33x+45
- (-12x^2-12x)
______________
45x+45
-(45x+45)
___________
0
Since that works, it's either B or D. We just have to figure out when
</span> x^2-12x+45 equals 0, since there are 3 roots and we already found one. Using the quadratic formula, we end up getting (12+-sqrt(144-180))/2=
(12+-sqrt (-36))/2. Since sqrt(-36) is 6i, and 6i/2=3i, it's pretty clear that B is our answer
The measure of Arc Q P is 96°. We also know that ∠QTP is central angle, then the measure of arc QP is 96°.
Step-by-step explanation:
<u>Step 1</u>
If QS is a circle diameter,
then m∠QTS=180°.
Let x be the measure of angle RTQ: ∠RTQ =x.
so, let ∠RTQ = x
<u />
<u>Step 2</u>
According to the question,
∠RTQ = ∠RTS - 12°
⇒ ∠RTS = x + 12°
∴ ∠QTS = ∠RTQ + ∠RTS
= x + x + 12° = 2x + 12° = 180°
⇒ 2x = 168°
⇒ x = 84°
⇒ ∠RTQ = 84°
<u></u>
<u>Step 3</u>
Now,
∵∠QTP and ∠RTS are vertical angles
∴ ∠QTP = 84° + 12° = 96°
As ∠QTP is the central angle, hence the measure of arc QP is 96°
<u></u>
<u>Step 4</u>
The Measure of arc QP = 96°