1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Colt1911 [192]
3 years ago
9

Balanced forces will result in which of the following

Engineering
1 answer:
tia_tia [17]3 years ago
8 0
D is the answer. Hope this helped
You might be interested in
A car accelerates from rest with an acceleration of 5 m/s^2. The acceleration decreases linearly with time to zero in 15 s, afte
Tpy6a [65]

Answer: At time 18.33 seconds it will have moved 500 meters.

Explanation:

Since the acceleration of the car is a linear function of time it can be written as a function of time as

a(t)=5(1-\frac{t}{15})

a=\frac{d^{2}x}{dt^{2}}\\\\\therefore \frac{d^{2}x}{dt^{2}}=5(1-\frac{t}{15})

Integrating both sides we get

\int \frac{d^{2}x}{dt^{2}}dt=\int 5(1-\frac{t}{15})dt\\\\\frac{dx}{dt}=v=5t-\frac{5t^{2}}{30}+c

Now since car starts from rest thus at time t = 0 ; v=0 thus c=0

again integrating with respect to time we get

\int \frac{dx}{dt}dt=\int (5t-\frac{5t^{2}}{30})dt\\\\x(t)=\frac{5t^{2}}{2}-\frac{5t^{3}}{90}+D

Now let us assume that car starts from origin thus D=0

thus in the first 15 seconds it covers a distance of

x(15)=2.5\times 15^{2}-\farc{15^{3}}{18}=375m

Thus the remaining 125 meters will be covered with a constant speed of

v(15)=5\times 15-\frac{15^{2}}{6}=37.5m/s

in time equalling t_{2}=\frac{125}{37.5}=3.33seconds

Thus the total time it requires equals 15+3.33 seconds

t=18.33 seconds

3 0
2 years ago
Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati
Artyom0805 [142]

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

8 0
3 years ago
I want a problems and there solutions of The inception of cavitation?​
Ugo [173]

Answer:

The overview of the given scenario is explained in explanation segment below.

Explanation:

  • The inception of cavitation, that further sets the restriction for high-pressure and high-free operation, has always been the matter of substantial experimental study over the last few generations.
  • Cavitation inception would be expected to vary on the segment where the local "PL" pressure mostly on segment keeps falling to that are below the "Pv" vapor pressure of the fluid and therefore could be anticipated from either the apportionment of the pressure.

    ⇒  A cavitation number is denoted by "σ" .

4 0
3 years ago
5 cause of a electrical problem​
cupoosta [38]

Answer:

1. Poor circuit protection

2.Grounding issue

3. lighting problem

4. Electrical shocks

5. High electricity bills

Explanation:

8 0
3 years ago
The interactive activities in this course
MariettaO [177]

Answer:

A

Explanation:

3 0
3 years ago
Other questions:
  • According to the amortization table, Demarco and Tanya will pay a total of in interest over the life of their loan.
    6·2 answers
  • When replacing a timing belt, many experts and vehicle manufacturers recommend that all of the following should be replaced exce
    13·1 answer
  • When you first start a car after it has been sitting for more than an hour, it pollutes up to ......times more than when the eng
    7·2 answers
  • Pennfoster Trades Safety test. Would appreciate the help. Thank you in advance. Check the screenshots below for the questions I'
    8·1 answer
  • 3. Technician A says passive permanent
    5·1 answer
  • Air is compressed by a 30-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process as
    11·1 answer
  • Vector A extends from the origin to a point having polar coordinates (7, 70ᵒ ) and vector B extends from the origin to a point h
    9·1 answer
  • While reflecting on the solutions and the process of concept generation, the development team takes a look at some critical ques
    10·1 answer
  • What is the tolerance for number 4?
    12·1 answer
  • Which of the following applies to a module?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!