1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
3 years ago
6

Name two types of Transformers.

Engineering
1 answer:
ipn [44]3 years ago
8 0
Bumblebee and Starscream
You might be interested in
The principal value of a Pareto diagram is as a
vlada-n [284]

The Pareto principle is that most things in our life are not commonly distributed.

<u>Explanation:</u>

Pareto chart shows that most of the things which we have in our life and the resources in our life are not equally distributed. The ratio is not always 50:50 according to this principle.

The most important use of a Pareto diagram is to show the most important factor among the set of factors that have been shown. Along with that it also shows the sources which lead to the common defects in the system and tries to solve those defects which occur most often.

4 0
3 years ago
Outline the structure of an input-output model (including assumptions about supply and demand). What is an inverse matrix? Why i
pishuonlain [190]

Answer:

Explanation:

C.1 Input-Output Model

It is a formal model that divides the economy into 2 sectors and traces the flow of inter-industry purchases and sales. This model was developed by Wassily Leontief in 1951. In simpler terms, the inter-industry model is a quantitative economic model that defines how the output of one industry becomes the input of another industrial sector. It is an interdependent economic model where the output of one becomes the input of another. For Eg: The Agriculture sector produces output using the inputs from the manufacturing sector.

The 3 main elements are:

Concentrates on an economy which is in equilibrium

Deals with technical aspects of production

Based on empirical investigations and assumptions

Assumptions

2 sectors - " Inter industry sector" and "final sector"

Output of one industry is the input for another

No 2 goods are produced jointly. i.e each industry produces homogenous goods

Prices, factor suppliers and consumer demands are given

No external economies or diseconomies of production

Constant returns to scale

The combinations of inputs are employed in rigidly fixed proportions.

Structure of IO model

See image 1

Quadrant 1: Flow of products which are both produced and consumed in the process of production

Quadrant 2: Final demand for products of each producing industry.

Quadrant 3: Primary inputs to industries (raw materials)

Quadrant 4: Primary inputs to direct consumption (Eg: electricity)

The model can be used in the analysis of the labor market, forecast economic development of a nation and analyze economic developments of various regions.

Leontief inverse matrix shows the output rises in each sector due to a unit increase in final demand. Inverting the matrix is significant since it is a linear system of equations with unique solutions. Thus, the final demand vector for the required output can be found.

C.2 Linear programming problems

Linear programming problems are optimization problems in which objective function and the constraints are all linear. It is most useful in making the best use of scarce resources during complex decision makings.

Primal LP, Dual LP, and Interpretations

Primal linear programming: They can be viewed as a resource allocation model that seeks to maximize revenue under limited resources. Every linear program has associated with it a related linear program called dual program. The original problem in relation to its dual is termed as a primal problem. The objective function is a linear combination of n variables. There are m constraints that place an upper bound on a linear combination of the n variables The goal is to maximize the value of objective functions that are subject to the constraints. If the primal linear programming has finite optimal value, then the dual has finite optimal value, and the primal and dual have the same optimal value. If the optimal solution to the primal problem makes a constraint into a strict inequality, it implies that the corresponding dual variable must be 0. The revenue-maximizing problem is an example of a primal problem.

Dual Linear Programming: They represent the worth per unit of resource. The objective function is a linear combination of m values that are the limits in the m constraints from the primal problem. There are n dual constraints that place a lower bound on a linear combination of m dual variables. The optimal dual solution implies fair prices for associated resources. Stri=ong duality implies the Company’s maximum revenue from selling furniture = Entrepreneur’s minimum cost of purchasing resources, i.e company makes no profit. Cost minimizing problem is an example of dual problems

See image 2

n - economic activities

m - resources

cj - revenue per unit of activity j

4 0
3 years ago
Read 2 more answers
A negative pressure respirator brings fresh air to you through a hose<br>A) True<br>B)False​
madreJ [45]

Answer:FALSE

Explanation: A negative pressure respirator is a respiratory system which is known to have a low air pressure inside the mask when compared to the air pressure on the outside during Inhalation.

Most of the personal protective equipment (PPE) which are in use in various industries are examples of Negative pressure respirator device,any leak or damage done to the device will allow the inflows of harmful and toxic Air into the person's respiratory system. AIR SUPPLY SYSTEMS ARE KNOWN TO SUPPLY FRESH UNCONTAMINATED AIR THROUGH AIR STORED INSIDE COMPRESSED CYLINDERS OR OTHER SOURCES AVAILABLE.

8 0
4 years ago
Read 2 more answers
Air flows from a large reservoir in which the pressure and temperature are 1 MPa and 30°C, respectively, through a convergent–di
SSSSS [86.1K]

Answer:

The solution is attached in the attachment.

3 0
3 years ago
Read 2 more answers
A three-point bending test is performed on a glass specimen having a rectangular cross section of height d 5 mm (0.2 in.) and wi
Anon25 [30]

Answer:

The flexural strength of a specimen is = 78.3 M pa

Explanation:

Given data

Height = depth = 5 mm

Width = 10 mm

Length L = 45 mm

Load = 290 N

The flexural strength of a specimen is given by

\sigma = \frac{3 F L}{2 bd^{2} }

\sigma = \frac{3(290)(45)}{2 (10)(5)^{2} }

\sigma = 78.3 M pa

Therefore the flexural strength of a specimen is = 78.3 M pa

4 0
3 years ago
Other questions:
  • What entrepreneurial activities do you know?are you capable of doing entrepreneurial activities
    15·1 answer
  • HELP!
    8·1 answer
  • What is 1000 kJ/sec in watts?
    10·1 answer
  • 3–102 One of the common procedures in fitness programs is to determine the fat-to-muscle ratio of the body. This is based on the
    5·1 answer
  • A car air-conditioning unit has a 0.5-kg aluminum storage cylinder that is sealed with a valve, and itcontains 2 L of refrigeran
    5·1 answer
  • Demonstreaza in 20 de propoziti ca snoava pacala si zarzarele boerului e o snoava
    12·1 answer
  • Consider a circuit element, with terminals a and b, that has vab= -12V and iab= 3A. Over a period of 2 seconds, how much charge
    8·1 answer
  • A hemispherical shell with an external diameter of 500 mm and a thickness of 20 mm is going to be made by casting, located entir
    12·1 answer
  • As you get older your muscles grow. True or False
    15·2 answers
  • I will give Brainliest, please help. :)
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!