Answer:
Use the distance formula on both points AC and AB.
<em>Distance formula is this</em><em>:</em>
<em>\begin{gathered}d=\sqrt{(x2-x1)^2+(y2-y1)^2} \\\\d=\sqrt{(1--5)^2+(8--7)^2} \\\\d=\sqrt{(6)^2+(15)^2} \\\\d=\sqrt{36+225} \\\\d=\sqrt{261} \\\\\end{gathered}d=(x2−x1)2+(y2−y1)2d=(1−−5)2+(8−−7)2d=(6)2+(15)2d=36+225d=261</em>
Distance for AC is 16.16
Now do the same with the numbers for AB and get the distance of 5.39
2. To get the area, use the formula 1/2 x base x height
AB is the base and AC is the height.
1/2 x 16.16 x 5.39 = 43.55
the answer is 43.5
Answer:
t = 1, but please check to see if I correctly interpreted your formatting.
Step-by-step explanation:
The format of the question is too confusing.
I'll assume this is the equation to be solved:
<u>16−2t=t+9+4t</u>
<u></u>
16−2t=t+9+4t
16-9 = t + 2t + 4t
7 = 7t
t = 1
I'm reading this as

with

.
The value of the integral will be independent of the path if we can find a function

that satisfies the gradient equation above.
You have

Integrate

with respect to

. You get


Differentiate with respect to

. You get
![\dfrac{\partial f}{\partial y}=\dfrac{\partial}{\partial y}[x^2e^{-y}+g(y)]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D%5Cdfrac%7B%5Cpartial%7D%7B%5Cpartial%20y%7D%5Bx%5E2e%5E%7B-y%7D%2Bg%28y%29%5D)


Integrate both sides with respect to

to arrive at



So you have

The gradient is continuous for all

, so the fundamental theorem of calculus applies, and so the value of the integral, regardless of the path taken, is
Answer:
g(x) = 
Step-by-step explanation:
f(x) = 3x + 5
f[g(x)] = 3[g(x)] + 5
⇒ 3[g(x)] + 5 = x + 4
⇒ 3[g(x)] = x + 4 - 5
⇒ 3[g(x)] = x - 1
⇒ g(x) = 