The coefficient of (3y² + 9)5 is <u>15</u>.
A polynomial is of the form a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ.
Here, x is the variable, aₙ is the constant term, and a₀, a₁, a₂, ..., and aₙ₋₁, are the coefficients.
a₀ is the leading coefficient.
In the question, we are asked to identify the coefficient of (3y² + 9)5.
First, we expand the given expression:
(3y² + 9)5
= 15y² + 45.
Comparing this to the standard form of a polynomial, a₀xⁿ + a₁xⁿ⁻¹ + a₂xⁿ⁻² + ... + aₙ₋₁x + aₙ, we can say that y is the variable, 15 is the coefficient, and 45 is the constant term.
Thus, the coefficient of (3y² + 9)5 is <u>15</u>.
Learn more about the coefficients of a polynomial at
brainly.com/question/9071229
#SPJ1
Simple pythagorus theorem with the equation a^2=b^2+c^2
To find AC, (2^2)+(3^2)=4+9=13
AC=the square root of 13
Answer:
x=−y+4
Step-by-step explanation:
Answer
a first one is 52 (90-38=52)
Second one is 32 (180-148=32
I can’t see the third or 4th one
Yes she can find the average colour by adding up all the amount of colors by how many colors there are.