Answer:
9. 66°
10. 44°
11. 
12. 
13. 27.3
14. 33.9
15. 22°
16. 24°
Step-by-step explanation:
9. Add 120 + 80 (equals 200) and subtract that from 360 (Because all angles in a quadrilteral add to 360°), this equals 160. Plug the same number in for both variables in the two other angle equations until the two angles add to 160. For shown work on #9, write:
120 + 80 = 200
360 - 200 = 160
12(5) + 6 = 66°
19(5) - 1 = 94°
94 + 66 = 160
10. Because the two sides are marked as congruent, the two angles are as well. This means the unlabeled angle is also 68°. The interior angles of a triangle always add to 180°, so add 68+68 (equals 136) and subtract that from 180, this equals 44. For shown work on #10, write:
68 x 2 = 136
180 - 136 = 44
11. Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #10, write:
a² + b² = c²
a² + 6² = 8²
a² + 36 = 64
a² = 28
a = 
a = 
12. (Same steps as #11) Use the Pythagorean theorem (a² + b² = c²) (Make sure to plug in the hypotenuse for c). Solve the equation. For shown work on #11, write:
a² + b² = c²
a² + 2² = 4²
a² + 4 = 16
a² = 12
a = 
a = 
13. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #13, write:
Sin(47°) = 
x = 27.3
14. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #14, write:
Tan(62°) = 
x = 33.9
15. Use SOH CAH TOA and solve with a scientific calculator. For shown work on #15, write:
cos(θ) = 52/56
θ = cos^-1 (0.93)
θ = 22°
16. (Same steps as #15) Use SOH CAH TOA and solve with a scientific calculator. For shown work on #16, write:
sin(θ) = 4/10
θ = sin^-1 (0.4)
θ = 24°
Good luck!!
3.5 miles per hour :) hopefully this helps!
Answer:
1/12
Step-by-step explanation:
Given that
30/360 to lowest fraction equivalent
Now, we can write 30 as 3×10
Also, we can write 360 as 36×10
Then, we have
(3×10)/(36×10)
Then, 10 cancel 10, we are left with
3/36
Also we can write 36 as 12×3
Then, we have
3/(12×3)
Also, 3 cancel 3, we are left with
1/12
Then the lowest fraction is 1 / 12
1/12
"He starts both trains at the same time. Train A returns to its starting point every 12 seconds and Train B returns to its starting point every 9 seconds". Basically, what you need to do is find the least common multiple. The least common multiple of 12 and 9 is 36, so the least amount of time, in seconds, that both trains will arrive at the starting points at the same time is 36 seconds.