1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
9

Which of the following is most likely the next step in the series? Image is above

Mathematics
1 answer:
Margarita [4]3 years ago
5 0

Answer:

A

Step-by-step explanation:

each picture has points on it first circle has 4 second circle has 3 third circle has 2 next will have 1 point

You might be interested in
What is X?<img src="https://tex.z-dn.net/?f=%5Cfrac%7Bx-2%7D%7B3%7D%20%3D%20%5Cfrac%7B-7%7D%7B18%7D" id="TexFormula1" title="\fr
dusya [7]

Answer:

x = 5/6

Step-by-step explanation:

Cross multiply.

18(x - 2) = 3(-7)

Divide both sides by 3.

6(x - 2) = -7

Distribute the 6.

6x - 12 = -7

Add 12 to both sides.

6x = 5

Divide both sides by 6.

x = 5/6

Answer: x = 5/6

6 0
3 years ago
Read 2 more answers
Find dy/dx x^3+y^3=18xy
tatyana61 [14]
Differentiate both sides of the equation.<span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span><span><span>d<span>dx</span></span><span>(<span>x3</span>+<span>y3</span>)</span>=<span>d<span>dx</span></span><span>(18xy)</span></span></span>Differentiate the left side of the equation.Tap for fewer steps...By the Sum Rule, the derivative of <span><span><span>x3</span>+<span>y3</span></span><span><span>x3</span>+<span>y3</span></span></span> with respect to <span>xx</span> is <span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.<span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>x3</span>]</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=3</span><span>n=3</span></span>.<span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span>3<span>x2</span>+<span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>Evaluate <span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>y3</span>]</span></span></span>.Tap for more steps...<span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span><span>3<span>x2</span>+3<span>y2</span><span>d<span>dx</span></span><span>[y]</span></span></span>Differentiate the right side of the equation.Tap for fewer steps...Since <span>1818</span> is constant with respect to <span>xx</span>, the derivative of <span><span>18xy</span><span>18xy</span></span> with respect to <span>xx</span> is <span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>.<span><span>18<span>d<span>dx</span></span><span>[xy]</span></span><span>18<span>d<span>dx</span></span><span>[xy]</span></span></span>Differentiate using the Product Rule which states that <span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span><span><span>d<span>dx</span></span><span>[f<span>(x)</span>g<span>(x)</span>]</span></span></span> is <span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span><span>f<span>(x)</span><span>d<span>dx</span></span><span>[g<span>(x)</span>]</span>+g<span>(x)</span><span>d<span>dx</span></span><span>[f<span>(x)</span>]</span></span></span> where <span><span>f<span>(x)</span>=x</span><span>f<span>(x)</span>=x</span></span> and <span><span>g<span>(x)</span>=y</span><span>g<span>(x)</span>=y</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Rewrite <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span> as <span><span><span>d<span>dx</span></span><span>[y]</span></span><span><span>d<span>dx</span></span><span>[y]</span></span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y<span>d<span>dx</span></span><span>[x]</span>)</span></span></span>Differentiate using the Power Rule which states that <span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span><span><span>d<span>dx</span></span><span>[<span>xn</span>]</span></span></span> is <span><span>n<span>x<span>n−1</span></span></span><span>n<span>x<span>n-1</span></span></span></span> where <span><span>n=1</span><span>n=1</span></span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y⋅1)</span></span></span>Multiply <span>yy</span> by <span>11</span> to get <span>yy</span>.<span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span><span>18<span>(x<span>d<span>dx</span></span><span>[y]</span>+y)</span></span></span>Simplify.Tap for more steps...<span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span><span>18x<span>d<span>dx</span></span><span>[y]</span>+18y</span></span>Reform the equation by setting the left side equal to the right side.<span><span>3<span>x2</span>+3<span>y2</span>y'=18xy'+18y</span><span>3<span>x2</span>+3<span>y2</span>y′=18xy′+18y</span></span>Since <span><span>18xy'</span><span>18xy′</span></span> contains the variable to solve for, move it to the left side of the equation by subtracting <span><span>18xy'</span><span>18xy′</span></span> from both sides.<span><span>3<span>x2</span>+3<span>y2</span>y'−18xy'=18y</span><span>3<span>x2</span>+3<span>y2</span>y′-18xy′=18y</span></span>Since <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> does not contain the variable to solve for, move it to the right side of the equation by subtracting <span><span>3<span>x2</span></span><span>3<span>x2</span></span></span> from both sides.<span><span>3<span>y2</span>y'−18xy'=−3<span>x2</span>+18y</span><span>3<span>y2</span>y′-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'−18xy'</span><span>3<span>y2</span>y′-18xy′</span></span>.Tap for fewer steps...Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3<span>y2</span>y'</span><span>3<span>y2</span>y′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>−18xy'=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>-18xy′=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>−18xy'</span><span>-18xy′</span></span>.<span><span>3y'<span>(<span>y2</span>)</span>+3y'<span>(−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>)</span>+3y′<span>(-6x)</span>=-3<span>x2</span>+18y</span></span>Factor <span><span>3y'</span><span>3y′</span></span> out of <span><span>3y'<span>y2</span>+3y'<span>(−6x)</span></span><span>3y′<span>y2</span>+3y′<span>(-6x)</span></span></span>.<span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span>Divide each term by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'<span>(<span>y2</span>−6x)</span>=−3<span>x2</span>+18y</span><span>3y′<span>(<span>y2</span>-6x)</span>=-3<span>x2</span>+18y</span></span> by <span><span><span>y2</span>−6x</span><span><span>y2</span>-6x</span></span>.<span><span><span><span>3y'<span>(<span>y2</span>−6x)</span></span><span><span>y2</span>−6x</span></span>=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span><span><span>3y′<span>(<span>y2</span>-6x)</span></span><span><span>y2</span>-6x</span></span>=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>3y'=−<span><span>3<span>x2</span></span><span><span>y2</span>−6x</span></span>+<span><span>18y</span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>x2</span></span><span><span>y2</span>-6x</span></span>+<span><span>18y</span><span><span>y2</span>-6x</span></span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span>Divide each term by <span>33</span> and simplify.Tap for fewer steps...Divide each term in <span><span>3y'=−<span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span></span><span>3y′=-<span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span></span></span> by <span>33</span>.<span><span><span><span>3y'</span>3</span>=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span><span><span>3y′</span>3</span>=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Reduce the expression by cancelling the common factors.Tap for more steps...<span><span>y'=−<span><span><span>3<span>(<span>x2</span>−6y)</span></span><span><span>y2</span>−6x</span></span>3</span></span><span>y′=-<span><span><span>3<span>(<span>x2</span>-6y)</span></span><span><span>y2</span>-6x</span></span>3</span></span></span>Simplify the right side of the equation.Tap for more steps...<span><span>y'=−<span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span><span>y′=-<span><span><span>x2</span>-6y</span><span><span>y2</span>-6x</span></span></span></span>Replace <span><span>y'</span><span>y′</span></span> with <span><span><span>dy</span><span>dx</span></span><span><span>dy</span><span>dx</span></span></span>.<span><span><span>dy</span><span>dx</span></span>=−<span><span><span><span>x2</span>−6y</span><span><span>y2</span>−6x</span></span></span></span>
6 0
3 years ago
(4a - 6) (30-26 +5)​
Yuki888 [10]

Answer:

36a-54

Step-by-step explanation:

(4a - 6) (30-26 +5)

(4a - 6) (9)

36a-54

plz mark as brainliest if it helps

4 0
3 years ago
You find a piece of wood that is 10.23 cm long and your friend finds on ethat is 17.65 cm long how long would they be if you att
sleet_krkn [62]
Answer:
27.88

Explanation:
10.23 + 17.65 = 27.88

Hope this helps!!
5 0
3 years ago
Which sequences of transformations confirm the congruence of shape II and shape I?
mylen [45]

Answer:

1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.

2. Second Option is correct , because by reflecting the shape I across  X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.

3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.

4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.

5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option

6 0
3 years ago
Read 2 more answers
Other questions:
  • A credit card issuer offers an APR. of 22.08% and compounds interest daily. Which is it most likely to advertise, its APR or it’
    15·2 answers
  • Rita had $300.she spent 1/3 of her money on notebooks and 1/4 of the remainder on staionary items.how much money does she have l
    8·1 answer
  • A garden is going to be built in the city park in the shape of a parallelogram with a rectangular walkway through it. The garden
    12·2 answers
  • The company is building a scale model of the theater’s main show tank for an investor's presentation. Each dimension will be mad
    13·1 answer
  • 15 DIVIDED 6 2/3<br><br> A. 2 3/4<br> B.100<br> C.100 1/4<br> D.2 1/4 <br><br> HELP!!!!!!
    13·1 answer
  • What is the difference between the permutations rule and the combinations​ rule? Choose the correct answer below. A. The permuta
    13·1 answer
  • What is the area of the figure?
    15·2 answers
  • Given: m∠1 = 140°, find m∠5. <br><br> A) 40° <br> B) 90° <br> C) 130° <br> D) 140°
    11·1 answer
  • The movie screen at the cinema is 70 feet long and 30 feet wide. What is the perimeter of the screen? A 200 feet B 140 feet © 60
    12·1 answer
  • I need help setting up the limits of integration for part A please. I need to get the mass.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!