Answer:
<em><u>Glycolysis produces pyruvate, ATP, and NADH by oxidizing glucose.</u></em>
Explanation:
Glycolysis is an oxidation reaction in which glucose reacts with oxygen molecules and oxidized. By oxidizing glucose, it produces pyruvate, adenosine triphosphate (ATP) and nicotinamide adenine dinucleotides (NADH). Glycolysis has two phases. In the first phase, 2 ATP molecules are invested for the phosphorylation of glucose to break down into a simpler one. In the second phase of glycolysis, 4 ATP molecules are earned back with 2 NADH and a simpler form of glucose (6C) to pyruvate (3C) by oxidizing glucose.
Quantity of blood delivered to various parts of the body.
Hiya
I don't see how this is a question, can you please elaborate a bit? Thanks!
Causes:
1. the increase in population and growth of the human race
2. the need for housing and industrial advancements
effects:
1. loss of habitat for wildlife
2 loss of trees for oxygen
Answer:
The sedimentary rock limestone which contains carbonate mineral Calcite and the metamorphic rocks which contain carbonate mineral Aragonite are the examples of rocks which react strongly with hydrochloric acid.
Explanation:
Rocks are naturally occurring structures formed on the Earth's crust and are composed of aggregate minerals. Classification of rocks: Igneous rocks - formed by cooling of magma on Earth's crust or seabed (basalts, gabbros, granite, etc), sedimentary rocks - formed over time by the accumulation of sediments from the weathering of existing rocks or fragments of minerals and organisms (mudstone, sandstone, shale, limestone, dolostone, siltstone, etc) and metamorphic rocks - transformed rocks formed from the existing rocks that are subjected to large pressures and temperatures (schists, gneiss, marble, etc).
The carbonate minerals like calcite, dolomite, aragonite, etc react with hydrochloric acid and release carbon dioxide gas bubbles. Calcite (calcium carbonate), which is found in igneous, metamorphic, and sedimentary rocks in a varying proportion reacts strongly with hydrochloric acid. So, the sedimentary rock Limestone which mainly contains calcite react strongly with the acid while Dolostone which mainly contains dolomite (calcium magnesium carbonate) reacts less vigorously. Another carbonate mineral aragonite, found in metamorphic rocks also reacts strongly with hydrochloric acid.