1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
icang [17]
3 years ago
14

Plzzzzzzzzzzzzz hellllllllllllllllllllllllllpppppppppppppppppp

Mathematics
2 answers:
cestrela7 [59]3 years ago
3 0

Answer:

1.02 units3

Step-by-step explanation:

<h2>18/15 =1.02</h2>
sukhopar [10]3 years ago
3 0
Answer is 1.02 ......
You might be interested in
What are the first three terms of the Arithmetic Sequence a_n = 15 – 2(n – 1)?
natulia [17]
N = 15

2( n - 1 )

2( 15 - 1 )

2( 14)

28 ✔️
8 0
3 years ago
Lim x → 0 sin3x)/5x^3 -4
JulsSmile [24]
\bf \lim\limits_{x\to 0}\ \cfrac{sin^3(x)}{5x^3}-4&#10;\\ \quad \\\\ \cfrac{sin^3(x)}{5x^3}-4\implies \cfrac{[sin(x)]^3}{5x^3}-4&#10;\\ \quad \\&#10; &#10;&#10;\cfrac{[sin(x)]^3}{x^3}\cdot \cfrac{1}{5}-4&#10;\\ \quad \\&#10;thus&#10;\\ \quad \\&#10;\lim\limits_{x\to 0}\cfrac{[sin(x)]^3}{x^3}\cdot \lim\limits_{x\to 0}\cfrac{1}{5}-4\qquad \boxed{recall \qquad \lim\limits_{x\to 0} \cfrac{sin(x)}{x}\implies 1}&#10;\\ \quad \\&#10;1\cdot \cfrac{1}{5}-4
8 0
3 years ago
Find all solutions to equations
mojhsa [17]

Answer:

x = 1

Step-by-step explanation:

7 0
3 years ago
10. Write the numbers in expanded (or long) form.
Sergeu [11.5K]

Answer:

a = 400+70+6

b= 90 +5

c=900+9

e= 300+20

1=70+2

g=100+1

8 0
2 years ago
Find the volume of the given solid. Bounded by the cylinder y2 + z2 = 16 and the planes x = 2y, x = 0, z = 0 in the first octant
erastovalidia [21]

Answer:

\mathbf{  \dfrac{128}{3}}

Step-by-step explanation:

Given that:

y^2 + z^2 = 16; \\ \\ where; \ x = 2y , x =0, z= 0

Replace \ z = 0  \ \text{in the given equation ;} y^2+z^2=16

Then;

y^2 = 16 \\ \\  y = \sqrt{16} \\ \\ y = \pm 4

\text{So; in 1st  octant \ limits of y }= 0 \to 4 \ \text{and for x }= 0 \to 2y

∴

\text{Volume of solid: (V) = }\int ^{4}_{y=0} \int ^{2y}_{x=0} \sqrt{16-y^2} \ dxdy \\ \\ = \int^4_{y=0} \sqrt{16 -y^2} \ (x)^{2y} _o \ dy  \\ \\ =  \int^4_{y=0}\sqrt{16 -y^2} (2y -0) \ dy \\ \\  V = \int^{4}_{y=0} \ 2y \sqrt{16 - y^2} \ dy

Now, let:\\\\ 16 - y^2 = u  \\ \\  -2ydy = du  \\ \\  2ydy = -du \\ \\ Hence, when \  y = 0; u = 16 \\ \\  and \\ \\  when \ y =  4 \ then \ u = 0

∴

V = \int ^4 _{y=0} \ 2y \sqrt{16 -y^2 } \ dy  \\ \\  = \int ^0_{16} - \sqrt{u}\ du  \\ \\  = - \int^0_{16} \ u^{^{\dfrac{1}{2}}} \ du  \\ \\  = \Bigg [\dfrac{u^{^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1 } \Bigg]^0_{16} \\ \\ =\Bigg[ -\dfrac{u^{\dfrac{3}{2}}}{\dfrac{3}{2}}^0_{16} \Bigg] \\ \\

= - \dfrac{2}{3}\Big( u^{\dfrac{3}{2}}\Big)^0_{16} \\ \\ = - \dfrac{2}{3} \Big(0^{^\dfrac{3}{2}}}- 16^{^{\dfrac{3}{2}}}\Big ) \\ \\ = - \dfrac{2}{3} \Big(0 - (4^2)^{^{\dfrac{3}{2}}}\Big ) \\ \\ = - \dfrac{2}{3} \Big(-(4)^{3}}\Big )

= - \dfrac{2}{3} \Big(64\Big )

∴

\mathbf{V = \dfrac{128}{3}}

5 0
2 years ago
Other questions:
  • Jaylon spent $21.60 of the $80 he got for his birthday. what percent of his money did he spend?
    11·1 answer
  • Which set of points contains the solutions to the inequality y ≤ 8x – 3? A. {(–3,–17), (4,11), (7,19)} B. {(3,22), (2,3), (8,27)
    5·1 answer
  • By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an op
    6·1 answer
  • the length of a pool 2 km long is represented on a map with a length of 20cm. what is the map scale used?​
    15·2 answers
  • Uhh i guess you just find x ..
    9·1 answer
  • May someone please help me with this :)
    10·1 answer
  • Super easy question just don’t know it
    10·1 answer
  • Assuming you are creating a book with 991 pages with a size of 8.5in x 11in, how many words will the story be?
    9·1 answer
  • Find the value of sin G rounded to the nearest hundredth, if necessary.
    11·1 answer
  • <img src="https://tex.z-dn.net/?f=4112%20%5Cdiv%205%20%3D%20822%20%20%20remainder%202" id="TexFormula1" title="4112 \div 5 = 822
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!