Answer:
The mean squares has d.f (n-1)
Step-by-step explanation:
The total number of degrees of freedom is n-1 as there is only one restriction of computing the grand mean. The d.f for k samples is k-1 beacuase the mean of the sample means must equal the grand mean. Similarly , the d.f for within SS is n-k , due to the k restrictions of computing the k sample means. Hence we find that
Total df= Within df + Between df
n-1= (n-k)+(k-1)
Between SS has (k-1) d.f
Within SS has (n-k) d.f
These two quantities are known as mean squares and has d.f (n-1)
(f - g(x) = 2x -2x squared
(sorry didn't know how to do the squared sign )
Answer:
the answer is C
Step-by-step explanation:
Answer:
<h3>1) The correlation coefficient gives us information as to how strong the linear association is between two quantitative variables.</h3><h3>2) The Correlation coefficient has units of measurement and does always lie between -1.0 and +1.0</h3><h3>3) The closer the absolute value of r is to 1, the stronger the relationship is between the two variables. </h3>
Step-by-step explanation:
The choices are
1) The correlation coefficient gives us information as to how strong the linear association is between two quantitative variables.
2) The Correlation coefficient has units of measurement and does always lie between -1.0 and +1.0
3) The closer the absolute value of r is to 1, the stronger the relationship is between the two variables.
4) A correlation coefficient of r=0 indicates a strong linear relationship between two variables.
The correlation coefficient is a number from -1 to 1, which indicates how strong can be the correlation between variables. It could be a strong positive correlation or a strong negative correlation. If the correlation coefficient is close to -1, then it's a strong negative correlation. If the correlation coefficient is close to 1, then it's a strong positive correlation.
Therefore, the first choice is correct.
The second choice is also correct, because the correlation coefficient is restricted to the interval [-1, 1].
The third choice is also crrect, because 1 represents a strong correlation between variables, but to have full answer, it should say "a strong positive corrrelation".
Complete question:
The growth of a city is described by the population function p(t) = P0e^kt where P0 is the initial population of the city, t is the time in years, and k is a constant. If the population of the city atis 19,000 and the population of the city atis 23,000, which is the nearest approximation to the population of the city at
Answer:
27,800
Step-by-step explanation:
We need to obtain the initial population(P0) and constant value (k)
Population function : p(t) = P0e^kt
At t = 0, population = 19,000
19,000 = P0e^(k*0)
19,000 = P0 * e^0
19000 = P0 * 1
19000 = P0
Hence, initial population = 19,000
At t = 3; population = 23,000
23,000 = 19000e^(k*3)
23000 = 19000 * e^3k
e^3k = 23000/ 19000
e^3k = 1.2105263
Take the ln
3k = ln(1.2105263)
k = 0.1910552 / 3
k = 0.0636850
At t = 6
p(t) = P0e^kt
p(6) = 19000 * e^(0.0636850 * 6)
P(6) = 19000 * e^0.3821104
P(6) = 19000 * 1.4653739
P(6) = 27842.104
27,800 ( nearest whole number)