Answer:
where is the graph if you can put it i will give you the answer
Step-by-step explanation:
I am going to explain this using the substitution method, considering it appears to be the best in this situation.
We know (from the bottom equation) that y can equal 3x+20. Using this knowledge, we substitute the y in the top equation for 3x+20. Now, we have an equation that looks like this:
3x+20=x^2+2x
Now we need to move x to one side and then do some radicals (square roots).
Subtract the 2x on the right (since it is smaller, negatives = NONONO), which will give you
x+20=x^2
Now, we take the square root of both sides to get
rad(x+20)=x
Now we have to simplify. 20 doesn't have a square root, but 4 goes into 20, and 4 has a square root of 2. This now becomes
2rad(x+5)
This doesn't simplify any further... we have a problem... no way to isolate x as far as my knowledge goes... Sorry, can't help you any further than that, but another person or your teacher might be able to. R.I.P...
We know that the area is 20.
Since 20 is a small number: lets list out possible combinations of lengths and widths.
1 * 20
2 * 10
4 * 5
L = 7 + 3w
lets see which on makes sense.
L = 7 + 3w
20 = w7 + 3w^2
3w^2 + 7w -20 = 0
(3w - 10)(w - 2)
w can equal 10/3 or 2.
So the dimensions: are Width = 2 Length = 10
A. Multiplied by 2 for the first then for the second multiply by three.
Explanation: the equations already have opposite signs for y so reversing the signs would be counterproductive. (Eliminates B and D) and the easiest way is to get the numbers before the Y variable to be the same. The top by 2 and bottom by 3 would do that, leaving only A.