1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
13

-56/8=? I dont understand the question help pls​

Mathematics
2 answers:
Anna11 [10]3 years ago
6 0

Answer:

-7 is the answer i think

Step-by-step explanation:

-56/8=-7

lisov135 [29]3 years ago
3 0

Answer:

that would be -7

Step-by-step explanation:

You might be interested in
A light bulb is designed by revolving the graph of:
nadya68 [22]

Answer:

\displaystyle 0.251327 \ in. \ of \ glass

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Expand by FOIL (First Outside Inside Last)
  • Factoring

<u>Calculus</u>

Differentiation

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration

  • Integration Property: \displaystyle \int\limits^a_b {cf(x)} \, dx = c \int\limits^a_b {f(x)} \, dx
  • Fundamental Theorem of Calculus: \displaystyle \int\limits^a_b {f(x)} \, dx = F(b) - F(a)
  • Area between Two Curves
  • Volumes of Revolution
  • Arc Length Formula: \displaystyle AL = \int\limits^a_b {\sqrt{1+ [f'(x)]^2}} \, dx
  • Surface Area Formula: \displaystyle SA = 2\pi \int\limits^a_b {f(x) \sqrt{1+ [f'(x)]^2}} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

\displaystyle y = \frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}\\Interval: [0, \frac{1}{3}]

<u>Step 2: Differentiate</u>

  1. Basic Power Rule:                    \displaystyle y' = \frac{1}{2} \cdot \frac{1}{3}x^{\frac{1}{2} - 1} - \frac{3}{2} \cdot x^{\frac{3}{2} - 1}
  2. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6}x^{\frac{-1}{2}} - \frac{3}{2}x^{\frac{1}{2}}
  3. [Derivative] Simplify:                \displaystyle y' = \frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}

<u>Step 3: Integrate Pt. 1</u>

  1. Substitute [Surface Area]:                                                                             \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{1+ [\frac{1}{6\sqrt{x}} - \frac{3\sqrt{x}}{2}}]^2}} \, dx
  2. [Integral - √Radical] Expand/Add:                                                               \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{81x^2+18x+1}{36x}} \, dx
  3. [Integral - √Radical] Factor:                                                                         \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {(\frac{1}{3}x^{\frac{1}{2}} - x^{\frac{3}{2}}) \sqrt{\frac{(9x + 1)^2}{36x}} \, dx
  4. [Integral - Simplify]:                                                                                       \displaystyle SA = 2\pi \int\limits^{\frac{1}{3}}_0 {-\frac{|9x + 1|(3x - 1)}{18}} \, dx
  5. [Integral] Integration Property:                                                                     \displaystyle SA = \frac{- \pi}{9} \int\limits^{\frac{1}{3}}_0 {|9x + 1|(3x - 1)} \, dx

<u>Step 4: Integrate Pt. 2</u>

  1. [Integral] Define:                                                                                             \displaystyle \int {|9x + 1|(3x - 1)} \, dx
  2. [Integral] Assumption of Positive/Correction Factors:                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {(9x + 1)(3x - 1)} \, dx
  3. [Integral] Expand - FOIL:                                                                                 \displaystyle \frac{9x + 1}{|9x + 1|} \int {27x^2 - 6x - 1} \, dx
  4. [Integral] Integrate - Basic Power Rule:                                                         \displaystyle \frac{9x + 1}{|9x + 1|} (9x^3 - 3x^2 - x)
  5. [Expression] Multiply:                                                                                      \displaystyle \frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|}

<u>Step 5: Integrate Pt. 3</u>

  1. [Integral] Substitute/Integral - FTC:                                                              \displaystyle SA = \frac{- \pi}{9} (\frac{(9x + 1)(9x^3 - 3x^2 - x)}{|9x + 1|})|\limits_{0}^{\frac{1}{3}}
  2. [Integrate] Evaluate FTC:                                                                                \displaystyle SA = \frac{- \pi}{9} (\frac{-1}{3})
  3. [Expression] Multiply:                                                                                     \displaystyle SA = \frac{\pi}{27} \ ft^2

<em>It is in ft² because it is given that our axis are in ft.</em>

<u>Step 6: Find Amount of Glass</u>

<em>Convert ft² to in² and multiply by 0.015 in (given) to find amount of glass.</em>

  1. Convert ft² to in²:                    \displaystyle \frac{\pi}{27} \ ft^2 \ \div 144 \ in^2/ft^2 = \frac{16 \pi}{3} \ in^2
  2. Multiply:                                   \displaystyle \frac{16 \pi}{3} \ in^2 \cdot 0.015 \ in = 0.251327 \ in. \ of \ glass

And we have our final answer! Hope this helped on your Calc BC journey!

5 0
2 years ago
In a bag of candy, there are 4 tootsie rolls, 3 lollipops, 5 hershey kisses and 6 starbursts. if you select one piece of candy a
ivann1987 [24]
4 tootsie rolls, 3 lollipops, 5 hersheys kisses, 6 starbursts......for a total of 18 pieces of candy.

now...there are 3 lollipops.....and 18 total pieces of candy.....so the probability of selecting a lollipop is : 3/18 which reduces to 1/6
6 0
3 years ago
P and q are integers that are multiple of 5. Which of this
zhuklara [117]

Answer:

we conclude that the only option (a) is true.

Step-by-step explanation:

As we know that the multiples of 5 are the numbers which we get when we multiply by 5.

i.e.

5×1=5

5×2=10

Here, 5 and 10 are multiples of 5.

Let p and q are integers that are multiples of 5.

Let us consider

p=5

q=10

so

p+q=5+10

     = 15

A number is divisible by 5 if it ends in 5 or 0.

i.e. 15/5 = 3

so p+q is divisible by 3 as there is no remainder left.

Therefore, option (a) is true.

Checking the other options:

(b) P –q is divisible by 10

As

p=5

q=10

so

p-q=5-10

     = -5

Numbers that are divisible by 10 need to be even or divisible by 2 and divisible by 5.

As -5 is not divisible by 2.

So, option b is NOT true.

(c) P +q is divisible by 20

As

p=5

q=10

so

p-q=5+10

     = 15

Divisibility rule of  20  implies that the last two digits of the number are either  00  or divisible by  20 .

Therefore, P + q= 20 is not divisible by 20 as we don't get the whole number.

(d) P + q is divisible by 25​

As

p=5

q=10

so

p-q=5+10

     = 15

p+q=15 is not divisible by 25 as it does not end with 00, 25, 50, or 75.

so, option d is NOT correct.

Therefore, we conclude that the only option (a) is true.

5 0
2 years ago
Find the explicit formula for a 1 =-4,a n =a n-1 +9,n&gt;=2
Mrrafil [7]

Given:

a_1=-4 and a_n=a_{n-1}+9 where n\geq 2.

To find:

The explicit formula for the given recursive formula.

Solution:

We know that recursive formula of an AP is:

a_n=a_{n-1}+d

Where, d is the common difference.

We have,

a_n=a_{n-1}+9

Here, d=9.

The first term of the AP is a_1=-4.

The explicit formula for an AP is:

a_n=a_1+(n-1)d

Substituting a_1=-4 and d=9, we get

a_n=-4+(n-1)9

a_n=-4+9n-9

a_n=-13+9n

Therefore, the required explicit formula for the given sequence is a_n=-13+9n.

6 0
3 years ago
Annual income of A is 10% more than of B whereas income of B is 20% more than that of C. If monthly income of C is $ 2000 then w
Vanyuwa [196]

Answer:

7040

Step-by-step explanation:

C= 2000

B = 20/100 x 2000 = 400 + 2000 = 2400

A= 10/100 x 2400 = 240+2400= 2640

2000 + 2400 + 2640 = 7040

3 0
2 years ago
Other questions:
  • Renee, her two brothers, and her two sisters combine their money together to buy their parents a gift for the holiday season. Th
    8·1 answer
  • Given an IVP
    15·1 answer
  • One of diagonals of a parallelogram is its altitude. What is the length of this altitude, if its perimeter is 50 cm, and the len
    9·1 answer
  • Mark computer weighs 35.769 pounds rounde to the nearest hundreds
    12·1 answer
  • Find the solution of the recurrence relation an = 3an−1 −3an−2 +an−3 if a0 = 2, a1 = 2, and a2 = 4.
    7·1 answer
  • Which reflection will produce an image of ARST with a
    9·2 answers
  • Add the two expressions. 2n−3 and −7n+2
    15·2 answers
  • Evan said that the difference between two negative numbers must be negative. Was he right?
    9·1 answer
  • What is the volume of 17.6​
    15·2 answers
  • Which do I pick A or B?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!