The point (4,3) reflected about the x axis,=> The x remains the same, the y flips over the x axis to be negative (4,3) ==>> (4,-3) The point (-3,-8) is reflected in the y-axis.=> The y remains the same, the x flips over the y axis to be negative (-3,-8)==>>(3,-8) The point (2,4) is reflected in the line x = -3.=> The x remains the same, the y flips over the x= -3 line. Instead of reflecting over the x axis (or the x = 0) line and just being +4 or 4 above the x axis to -4 or 4 below the x axis you have +4 being 7 above the x= -3 line so you need 7 below the x= -3 line or -10 SO (2,4)==>>(2,-10) The point (a, b) is reflected in the line y = x Consider that the line x=y is a 45 degree diagonal. Imagine a point on the x axis at +3 i.e. (3,0) Imagine a line perpendicular to x=y from the point (3,0) (sorry there is no way to draw on here - try drawing it) The line would hit the y axis at (0,3) So you can see the x becomes y and y becomes x. (a,b)==>>(b,a) ForΔXYZ is defined by its vertices X(1,3), Y(-3,5), and Z(0, -5). ΔXYZ is reflected in the y-axis.So for each of of the 3 points X, Y, and Z reflect them about the y axis the same way in the second example above and you will have the 3 new points X’, Y', and Z’ The translation T: (x, y) → (x -2, y + 4) maps the point (2, -3) to The translation T: (x, y) → (x + 3, y - 2) maps the point (-4, -3) to What you need to do here is just plug the values for X and Y into the translation. e.g. for T: (x, y) → (x -2, y + 4) plug (2,-3) of x=2 y=-3 into (x -2, y + 4) and get the new values.
For the answer to the question above, The expected value in percentage format is 0.2 x 15+0.4 x 20 + 0.3 x 30 + 0.1*35 = <u><em>23.5%</em></u> The answer is <u><em>23.5% </em></u> I hope my answer helped you. Have a nice day ahead! <u><em /></u>
The formula for density of an object is Density= First you plug in the information you already know. 163.5= Now you have to solve for the mass so you multiply 0.492 by 163.5 Lastly, you simplify and you will get 80.44. Hope this helped :)