95 divided by 5 is 19. You can count by fives until you get to 95.
So... hmm bear in mind, when the boat goes upstream, it goes against the stream, so, if the boat has speed rate of say "b", and the stream has a rate of "r", then the speed going up is b - r, the boat's rate minus the streams, because the stream is subtracting speed as it goes up
going downstream is a bit different, the stream speed is "added" to boat's
so the boat is really going faster, is going b + r
notice, the distance is the same, upstream as well as downstream
thus
![\bf \begin{cases} b=\textit{rate of the boat}\\ r=\textit{rate of the river} \end{cases}\qquad thus \\\\\\ \begin{array}{lccclll} &distance&rate&time(hrs)\\ &----&----&----\\ upstream&48&b-r&4\\ downstream&48&b+4&3 \end{array} \\\\\\ \begin{cases} 48=(b-r)(4)\to 48=4b-4r\\\\ \frac{48-4b}{-4}=r\\ --------------\\ 48=(b+r)(3)\\ -----------------------------\\\\ thus\\\\ 48=\left[ b+\left(\boxed{\frac{48-4b}{-4}}\right) \right] (3) \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%0Ab%3D%5Ctextit%7Brate%20of%20the%20boat%7D%5C%5C%0Ar%3D%5Ctextit%7Brate%20of%20the%20river%7D%0A%5Cend%7Bcases%7D%5Cqquad%20thus%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Barray%7D%7Blccclll%7D%0A%26distance%26rate%26time%28hrs%29%5C%5C%0A%26----%26----%26----%5C%5C%0Aupstream%2648%26b-r%264%5C%5C%0Adownstream%2648%26b%2B4%263%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0A%0A%5Cbegin%7Bcases%7D%0A48%3D%28b-r%29%284%29%5Cto%2048%3D4b-4r%5C%5C%5C%5C%0A%5Cfrac%7B48-4b%7D%7B-4%7D%3Dr%5C%5C%0A--------------%5C%5C%0A48%3D%28b%2Br%29%283%29%5C%5C%0A-----------------------------%5C%5C%5C%5C%0Athus%5C%5C%5C%5C%0A48%3D%5Cleft%5B%20b%2B%5Cleft%28%5Cboxed%7B%5Cfrac%7B48-4b%7D%7B-4%7D%7D%5Cright%29%20%5Cright%5D%20%283%29%0A%5Cend%7Bcases%7D)
solve for "r", to see what the stream's rate is
what about the boat's? well, just plug the value for "r" on either equation and solve for "b"
<h2>
Answer:</h2><h3>False</h3><h2>
Step-by-step explanation:</h2>
The inverse is not a function because this function is not one-to-one, that is, a function
has an inverse function if and only if there is no any horizontal line that intersects the graph of
at more than one point, this is called the Horizontal Line Test for Inverse Functions. Thus, if you take an horizontal line it will pass through two points as indicated in the figure below. In conclusion, this function hasn't an inverse function.
Answer:
EIM
Step-by-step explanation:
simentrical side cuting.then the other side also same area
Answer:
300
Step-by-step explanation:
400 X 0.75 = 300