Answer:
The molar solubility of carbon dioxide gas is
.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = 
= partial pressure of carbonated drink

where = p = Total pressure = 0.400 atm
= mole fraction of 

Putting values in above equation, we get:

Hence, the molar solubility of carbon dioxide gas is
.
Answer:
approximately 15.1 grams.
Explanation:
The key to chemistry is to change everything to moles. Then when you have the answer in moles change the answer back to grams, liters, or whatever you want.
change 25 grams of potassium chlorate to moles.
calculate the gram molecular mass of potassium chlorate.
Chlorate is Cl with 3 oxygens. ate = saturated. Chlorine has seven valance electrons when it is saturated six of these electrons are used by oxygen ( 2 electrons per oxygen) leaving only 1 electron.
1 K x 39 grams/mole
+1 Cl x 35.4 grams/ mole
+3 O x 16 grams/ mole
= 122.4 grams / mole Potassium Chlorate
25
122.4
= moles.
2.05 moles of Potassium Chlorate.
There is a 1:1 mole ratio. 1 mole of Potassium Chlorate will produce 1 mole of Potassium Chloride.
2.05 moles of Potassium Chlorate will produce 2.05 moles of Potassium Chloride.
Find the gram molecular mass of Potassium Chloride.
1 K x 39 = 39
+1 Cl x 35.4 = 35.4
= 74.4 grams / mole.
2.05 moles x 74.4 grams/ mole = 15.2 grams
Before it is released it as potential energy and after it has been released it transforms into kinetic energy.
The number of atoms in one mole is same in both which is 6 x 10^23 ^23 means power 23
Use PV=nRT to solve the equation. You need to solve for n (number of moles). Don’t forget to convert the temperature to kelvins by adding 25+273. Use 0.082057 for R.