Sodium is a member of the alkali metal family with potassium (K) and Lithium (LI) sodium's big claim to fame is that it's one or two elements in your table salt. when bonded to chlorine (CI) THE two elements make sodium chloride
This question seems to be very basic .the ocean is above the plate, the plate material is heavier than water (it being rock). That's pretty much all of it. The plates grind a little and new land pushes up at plate boundaries but this does not seem to be related. The heavier material is below and the lighter above, those being rock and water respectively.
hope this helped u
The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behaviour of quantum particles and, therefore, the smallest scales of nature. Of these scales, the most we can hope for is to calculate probabilities for where things are and how they will behave. Unlike Isaac Newton's clockwork universe, where everything follows clear-cut laws on how to move and prediction is easy if you know the starting conditions, the uncertainty principle enshrines a level of fuzziness into quantum theory.
This Should help you
According to
Graham's Law ," the rates of effusion or diffusion of two gases are inversely proportional to the square root of their molecular masses at given pressure and temperature".
r₁ / r₂ =

---- (1)
r₁ = Rate of effusion of He
r₂ = Rate of Effusion of O₃
M₁ = Molecular Mass of He = 4 g/mol
M₂ = Molecular Mass of O₃ = 48 g/mol
Putting values in eq. 1,
r₁ / r₂ =

r₁ / r₂ =

r₁ / r₂ =
3.46
Result: Therefore, Helium will effuse
3.46 times more faster than Ozone.
Answer:
1200 mL
Explanation:
Given data
- Initial pressure (P₁): 600.0 mmHg
- Initial volume (V₁): 400.0 mL
- Final pressure (P₂): 200.0 mmHg
For a gaseous sample, there is an inverse relationship between the pressure and the volume. If we consider the gas as an ideal gas, we can find the final volume using Boyle's law.
