1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KiRa [710]
3 years ago
8

In Tucson, Arizona, the air pollution index averages 62.5 during the year with a standard deviation of 18. assuming normality, t

he index falls within what interval 95% of the time?
A) (8.5, 116.5)
B) (44.5, 80.5)
C) (45.4, 79.6)
D) (26.5, 98.5)
E) not enough info given
Mathematics
1 answer:
andrew-mc [135]3 years ago
8 0
The interval of 95% confidence, for normally distributed variables, is average +/- 2 * standard deviation:

(-2*standard deviation + average , average + 2*standard deviation)

(-2*18 + 62.5 , 2*18 + 62.5) = (-36 + 62.5 , 36 + 62.5) = (26.5 , 98.5)

Answer: option D)


You might be interested in
The scale on a map indicates that 1 inch corresponds to an actual distance of 95 miles. two cities are 4.5 inches apart on the m
arlik [135]
The two cities are actually 427.5 miles apart.
3 0
3 years ago
Roger makes 70 gallons of pink paint by mixing 21 gallons of white paint. what part of every gallon is from red paint?
forsale [732]
There are 49 gallons of red paint.
I figured it out by doing the following:

70 \:  -  \: 21 \:  =  \: 49
If you subtract the gallons of pink paint (21) from the total number of gallons (70), then you get the number of gallons of red paint (49) because 49 + 21 = 70. I hope that helps :)
8 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
QUESTION 3
miv72 [106K]

Answer:

.

Step-by-step explanation:

7 0
3 years ago
A container holds 28 cups of water. How much is this in gallons?
marysya [2.9K]

Answer:................................................................................................

15

7 0
3 years ago
Other questions:
  • 2.8 = 2y<br> What does y equal?<br> 1.4<br> 0.5<br> 2.8<br> 0.6
    15·2 answers
  • To solve an equation what do you use to isolate the variable?
    11·1 answer
  • Which of the following is not a way to determine if a relation is a function?
    6·1 answer
  • 10/n = 18/27 what is n?
    7·2 answers
  • Round the following times to 1 decimal place 8.16
    5·1 answer
  • How to do vertical and horizontal lines in a graph
    15·2 answers
  • If there are 420 students surveyed, which equation can be used to find the number of students s who prefer rap? Pop: 5/8 Jazz: 1
    11·1 answer
  • SA = 2tr2 + 2trh
    10·1 answer
  • WILL GIVE BRAINLIEST! PLEASE HELP ASAP!
    14·2 answers
  • an electrician charges a set fee of $150 for every house call and then charges an additional $70 per hour. write an equation for
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!