Answer:
The remaining side and angles are
,
and
.
Step-by-step explanation:
According to the information given on statement, we are in front of a right triangle because
, opossite to side
, is a right angle. Hence,
is the hypotenuse of the right triangle and
, a leg. The missing length can be calculated by the Pythagorean Theorem:
(1)
If we know that
and
, then the length of the missing leg is:
![a = \sqrt{c^{2}-b^{2}}](https://tex.z-dn.net/?f=a%20%3D%20%5Csqrt%7Bc%5E%7B2%7D-b%5E%7B2%7D%7D)
![a = 20\sqrt{3}](https://tex.z-dn.net/?f=a%20%3D%2020%5Csqrt%7B3%7D)
Lastly, we find the value of the missing angles by means of direct and inverse trigonometric relations:
Angle A
(2)
Angle B
(3)
If we know that
and
, then the values of the missing angles are, respectively:
Angle A
![\angle A = \tan^{-1}\left(\frac{a}{b} \right)](https://tex.z-dn.net/?f=%5Cangle%20A%20%3D%20%5Ctan%5E%7B-1%7D%5Cleft%28%5Cfrac%7Ba%7D%7Bb%7D%20%5Cright%29)
![\angle A = 60^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20A%20%3D%2060%5E%7B%5Ccirc%7D)
Angle B
![\angle B = \tan^{-1} \left(\frac{b}{a} \right)](https://tex.z-dn.net/?f=%5Cangle%20B%20%3D%20%5Ctan%5E%7B-1%7D%20%5Cleft%28%5Cfrac%7Bb%7D%7Ba%7D%20%5Cright%29)
![\angle B = 30^{\circ}](https://tex.z-dn.net/?f=%5Cangle%20B%20%3D%2030%5E%7B%5Ccirc%7D)
The remaining side and angles are
,
and
.