Answer:
See below
Step-by-step explanation:
It could be a positive square root l like √10 ( the number not being a perfect square).
He would have obtained this value from the application of the Pythagoras theorem. For example the length and width of the rectangle might have been 3 and 1 foot respectively, so the diagonal would have length √(3^2 + 1^2) = √10.
He could give an estimate of the length to nearest hundredth using his calculator. This would be 3.16 feet.
Check the picture below.
let's recall that a kite is a quadrilateral, and thus is a polygon with 4 sides
sum of all interior angles in a polygon
180(n - 2) n = number of sides
so for a quadrilateral that'd be 180( 4 - 2 ) = 360, thus
![\bf 3b+70+50+3b=360\implies 6b+120=360\implies 6b=240 \\\\\\ b=\cfrac{240}{6}\implies b=40 \\\\[-0.35em] ~\dotfill\\\\ \overline{XY}=\overline{YZ}\implies 3a-5=a+11\implies 2a-5=11 \\\\\\ 2a=16\implies a=\cfrac{16}{2}\implies a=8](https://tex.z-dn.net/?f=%5Cbf%203b%2B70%2B50%2B3b%3D360%5Cimplies%206b%2B120%3D360%5Cimplies%206b%3D240%20%5C%5C%5C%5C%5C%5C%20b%3D%5Ccfrac%7B240%7D%7B6%7D%5Cimplies%20b%3D40%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Coverline%7BXY%7D%3D%5Coverline%7BYZ%7D%5Cimplies%203a-5%3Da%2B11%5Cimplies%202a-5%3D11%20%5C%5C%5C%5C%5C%5C%202a%3D16%5Cimplies%20a%3D%5Ccfrac%7B16%7D%7B2%7D%5Cimplies%20a%3D8)
It is certainly possible for a function decreasing over a certain interval to be negative, but no rule that says it must be. On the other hand, where the function is decreasing, the rate of change of the function must be negative.
Answer:
I see no picture
Step-by-step explanation:
I dont really know the difference between them lol; also it's a little blurry
sorry