<h2>
Answer:</h2>
![x\geq 3 \ and \ x+1 \geq 4](https://tex.z-dn.net/?f=x%5Cgeq%203%20%5C%20and%20%5C%20x%2B1%20%5Cgeq%204)
<h2>
Step-by-step explanation:</h2>
The question in this problem is:
<em>The sum of 2 consecutive integers is at most the difference between nine times the smaller and 5 times the larger. What are the numbers?</em>
<em />
First of all, let's name the first variable
which is the smaller number. Accordingly, the lager number will be
given that those numbers are consecutive. On the other hand<em> at most </em>conveys the idea of an inequality, which is:
![\leq \\ which \ means \ less \ than](https://tex.z-dn.net/?f=%5Cleq%20%5C%5C%20which%20%5C%20means%20%5C%20less%20%5C%20than)
So:
1. The sum of 2 consecutive integers can be written as:
![v+(v+1)](https://tex.z-dn.net/?f=v%2B%28v%2B1%29)
2. Nine times the smaller and 5 times the larger can be written as:
![9v-5(v+1)](https://tex.z-dn.net/?f=9v-5%28v%2B1%29)
Finally, the whole statement:
The sum of 2 consecutive integers is at most the difference between nine times the smaller and 5 times the larger:
![x+(x+1) \leq 9x-5(x+1) \\ \\ x+x+1\leq 9x-5x-5 \\ \\ 2x+1 \leq 4x-5 \\ \\ 6 \leq 2x \\ \\](https://tex.z-dn.net/?f=x%2B%28x%2B1%29%20%5Cleq%209x-5%28x%2B1%29%20%5C%5C%20%5C%5C%20x%2Bx%2B1%5Cleq%209x-5x-5%20%5C%5C%20%5C%5C%202x%2B1%20%5Cleq%204x-5%20%5C%5C%20%5C%5C%206%20%5Cleq%202x%20%5C%5C%20%5C%5C%20)
![x+(x+1) \leq 9x-5(x+1) \\ \\ x+x+1\leq 9x-5x-5 \\ \\ 2x+1 \leq 4x-5 \\ \\ 6 \leq 2x \\ \\ \frac{6}{2} \leq \frac{2x}{2} \\ \\ 3 \leq x \\ \\ x\geq 3 \\ \\ and \\ \\ x+1 \geq 4](https://tex.z-dn.net/?f=x%2B%28x%2B1%29%20%5Cleq%209x-5%28x%2B1%29%20%5C%5C%20%5C%5C%20x%2Bx%2B1%5Cleq%209x-5x-5%20%5C%5C%20%5C%5C%202x%2B1%20%5Cleq%204x-5%20%5C%5C%20%5C%5C%206%20%5Cleq%202x%20%5C%5C%20%5C%5C%20%5Cfrac%7B6%7D%7B2%7D%20%5Cleq%20%5Cfrac%7B2x%7D%7B2%7D%20%5C%5C%20%5C%5C%203%20%5Cleq%20x%20%5C%5C%20%5C%5C%20x%5Cgeq%203%20%5C%5C%20%5C%5C%20and%20%5C%5C%20%5C%5C%20x%2B1%20%5Cgeq%204)
The two numbers are:
![x\geq 3 \ and \ x+1 \geq 4](https://tex.z-dn.net/?f=x%5Cgeq%203%20%5C%20and%20%5C%20x%2B1%20%5Cgeq%204)