Answer:
Option C
Explanation:
Primase synthesizes DNA polymerase through the initiation of synthesis of RNA primer. DNA polymerase is able to add nucleotides in only one direction towards the direction of replication fork Hence, it add to the chain only at 3’ end and build new strand from 5’ to 3’ end.
The 5’ to 3’ strand is the leading strand and is easy to build as 5’ to 3’ progresses towards the replication fork and DNA polymerase also move in the same direction
Hence, option C is correct
Organization of Cells
Biological organization exists at all levels in organisms. It can be seen at the smallest level, in the molecules that made up such things as DNA and proteins, to the largest level, in an organism such as a blue whale, the largest mammal on Earth. Similarly, single celled prokaryotes and eukaryotes show order in the way their cells are arranged. Single-celled organisms such as an amoeba are free-floating and independent-living. Their single-celled "bodies" are able to carry out all the processes of life, such as metabolism and respiration, without help from other cells. Some single-celled organisms, such as bacteria, can group together and form a biofilm. A biofilm is a large grouping of many bacteria that sticks to a surface and makes a protective coating over itself. Biofilms can show similarities to multicellular organisms. Division of labor is the process in which one group of cells does one job (such as making the "glue" that sticks the biofilm to the surface), while another group of cells does another job (such as taking in nutrients). Multicellular organisms carry out their life processes through division of labor. They have specialized cells that do specific jobs. However, biofilms are not considered multicellular organisms and are instead called colonial organisms. The difference between a multicellular organism and a colonial organism is that individual organisms from a colony or biofilm can, if separated, survive on their own, while cells from a multicellular organism (e.g., liver cells) cannot. Next time fraze your question better. It took me a secound to understand what you were trying to ask
Answer:
b. Because they have a low affinity for the H+
Explanation:
All electrons that enter the transport chain come from NADH and FADH2 molecules that are produced in earlier phases of cellular respiration: glycolysis, pyruvate oxidation and the citric acid cycle.
NADH is very good at donating electrons in redox reactions (that is, its electrons are at a high energy level), so you can transfer your electrons directly to complex I and transform it back into NAD +. The movement of electrons through complex I in a series of redox reactions releases energy, which the complex uses to pump protons from the matrix into the intermembrane space.
FADH2 is not as good for donating electrons as NADH (that is, its electrons are at a lower energy level), so it cannot transfer its electrons to complex I. Instead, it introduces electrons to the transport chain through complex II, which does not pump protons through the membrane.
Grass—>Mushroom—>Rabbit——>Snake—->Fox I think???
Answer:
C. Co-evolution
Explanation:
In biology, coevolution occurs when two or more species reciprocally affect each other's evolution through the process of natural selection. The term sometimes is used for two traits in the same species affecting each other's evolution, as well as gene-culture coevolution