1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Virty [35]
4 years ago
9

∠E and ∠F are vertical angles with m∠E=8x+8 and m∠F=2x+38 . What is the value of x? Enter your answer in the box.

Mathematics
2 answers:
Hitman42 [59]4 years ago
6 0

Answer:

x = 5

Step-by-step explanation:

We need to remember that vertical angles are opposite to each other when two lines cross. The vertical angles that result from two lines crossing have the <u>same measure</u>.

In this problem we have angle E which measures 8x + 8 and angle F which measure 2x + 38.

Since they are vertical angles, we know that they have the same measure and therefore we can equal them both and solve for x:

8x+8=2x+38\\8x-2x=38-8\\6x=30\\x=5

Therefore, x = 5 (and ∠E = ∠F = 48)

konstantin123 [22]4 years ago
4 0
Set the two measures equal to each other. Subtract 2x from both sides and subtract 8 from both sides. Leaving you with 6x=30. Then divide 30/6 and you get X=5
You might be interested in
I need help I don’t understand this
alex41 [277]

This is the solution hope you can understand, i apologize for the bad handwriting

4 0
3 years ago
Plssssss helppppppppp
madam [21]

Answer:

1,385.44 {ft}^{2}

<h3>4th answer is correct</h3>

Step-by-step explanation:

\pi {r}^{2}  \\ \pi \times 21 \times 21 \\  = 1,385.44 {ft}^{2}

7 0
3 years ago
Say you're playing three-card poker; that is, you're dealt three cards in a row at random from a standard deck of 52 cards. What
Brums [2.3K]

Answer:

Step-by-step explanation:

Given

There are 52 cards in total

there are total of 13 pairs of same cards with each pair containing 4 cards

Probability of getting a pair or three of kind card=1-Probability of all three cards being different

Probability of selecting all three different cards can be find out by selecting a card from first 13 pairs and remaining 2 cards from remaining 12 pairs i.e.

=\frac{52\times 48\times 44}{52\times 51\times 50}

for first card there are 52 options after choosing first card one pair is destroyed as we have to select different card .

For second card we have to select from remaining 12 pairs i.e. 48 cards and so on for third card.

Required Probability is =1-\frac{52\times 48\times 44}{52\times 51\times 50}

=\frac{22776}{132600}

7 0
3 years ago
Simplify the following leave the answer in radical notation:
Nataliya [291]

Answer:

1- 5xy³√5y

2- 2xy²∛3y²

Step-by-step explanation:

√125x²y^7=

√25*5x²y^6y

5xy³√5y

2) ∛24x³y^8=

∛2³*3x³y^8=

2xy²∛3y²

7 0
3 years ago
Someone help please!!!
Sati [7]

Answer:

<em>y</em><em> </em><em>intercep</em><em>t</em><em> </em><em>=</em><em> </em><em> </em><em>-</em><em>5</em><em> </em>

<em>slope</em><em>=</em><em> </em><em>4</em><em> </em>

<em>equa</em><em>tion</em><em>:</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em>

EXPLANATION:

<em>FIRST</em><em>,</em><em> </em><em>you</em><em> </em><em>must </em><em>write</em><em> </em><em>the</em><em> </em><em>formula </em><em>for</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>graph</em><em> </em><em> </em><em>,</em><em> </em><em>whic</em><em>h</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>x</em><em>)</em><em> </em><em>+</em><em> </em><em>c</em>

<em>where</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>any</em><em> </em><em>y</em><em> </em><em>component</em><em> </em><em>and</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>it's </em><em>correspondi</em><em>ng</em><em> </em><em>x</em><em> </em><em>componen</em><em>t</em><em> </em><em>,</em><em> </em><em>m</em><em> </em><em>is</em><em> </em><em>the </em><em>gradien</em><em>t</em><em> </em><em>or</em><em> </em><em>slope</em><em> </em><em>and</em><em> </em><em>c</em><em> </em><em>is</em><em> </em><em>the </em><em>consta</em><em>nt</em><em> </em><em>or</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>SOLUT</em><em>ION</em><em>:</em>

<em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>c</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>gradie</em><em>nt</em><em> </em><em>(</em><em>m</em><em>)</em>

<em>m</em><em> </em><em>=</em><em> </em><em><u>y2</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>y1</u></em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x2</em><em> </em><em>-</em><em> </em><em>x1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>(</em><em> </em><em>(</em><em>-</em><em>1</em><em>)</em><em>-</em><em>(</em><em>-</em><em>5</em><em>)</em><em> </em><em>)</em><em> </em><em>÷</em><em> </em><em>(</em><em>1</em><em>-</em><em>0</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>+</em><em>5</em><em> </em><em>÷</em><em> </em><em>1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>4</em>

<em>There</em><em>fore</em><em>,</em><em> </em><em>the</em><em> </em><em>slop</em><em>e</em><em> </em><em>is</em><em> </em><em>4</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em>in</em><em> </em><em>the </em><em>abo</em><em>ve</em><em> </em><em>equation</em><em>,</em><em> </em><em>I </em><em>substitut</em><em>ed</em><em> </em><em>the</em><em> </em><em>val</em><em>ue</em><em> </em><em>I </em><em>had</em><em> </em><em>for</em><em> </em><em>the</em><em> </em><em>slope </em><em>or</em><em> </em><em>the</em><em> </em><em>gradient</em><em> </em><em>or</em><em> </em><em>m</em><em>.</em>

<em>SO</em><em> </em><em>NOW</em><em> </em><em>IM</em><em> </em><em>ABO</em><em>UT</em><em> </em><em>TO</em><em> </em><em>FIND</em><em> </em><em>C</em>

<em><u>TO</u></em><em><u> </u></em><em><u>FIND</u></em><em><u> </u></em><em><u>C</u></em><em><u>,</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>MUST</u></em><em><u> </u></em><em><u>FIRST</u></em><em><u> </u></em><em><u>PICK</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>CORRESP</u></em><em><u>ONDING</u></em><em><u> </u></em><em><u>Y</u></em><em><u> </u></em><em><u>AND</u></em><em><u> </u></em><em><u>X</u></em><em><u> </u></em><em><u>COMPO</u></em><em><u>NENT</u></em><em><u>.</u></em>

<em><u>I</u></em><em><u> </u></em><em><u>CHOO</u></em><em><u>SE</u></em><em><u> </u></em><em><u>MY</u></em><em><u> </u></em><em>Y</em><em> </em><em>=</em><em> </em><em>3</em><em> </em><em>and</em><em> </em><em>X</em><em> </em><em>=</em><em> </em><em>2</em>

<em> </em><em> </em><em>Now</em><em> </em><em>I'm </em><em>goi</em><em>ng</em><em> </em><em>to</em><em> </em><em>substitute</em><em> </em><em>those</em><em> </em><em>valu</em><em>es</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>formul</em><em>a</em><em>.</em>

<em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>=</em><em> </em><em>4</em><em>(</em><em>2</em><em>)</em><em> </em><em> </em><em>+</em><em> </em><em>C</em>

<em>since</em><em> </em><em>it's </em><em>an</em><em> </em><em>equation</em><em> </em><em>with</em><em> </em><em>one</em><em> </em><em>variable</em><em>,</em><em> </em><em>no</em><em> </em><em>need </em><em>for</em><em> </em><em>simul</em><em>taneous</em><em> equations</em><em>.</em>

<em> </em><em>3</em><em> </em><em>=</em><em> </em><em>8</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em>3</em><em>-</em><em>8</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em>

<em>SO</em><em> </em><em>THATS</em><em> </em><em>HOW</em><em> </em><em>WE</em><em> </em><em>ARRIVED</em><em> </em><em>AT</em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>AND</em><em> </em><em>4</em><em>.</em>

<em> </em><em>WITH</em><em> </em><em>THAT</em><em>,</em><em> </em><em>the</em><em> </em><em>equa</em><em>tion</em><em> </em><em>of</em><em> </em><em>the </em><em>line</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em><em>.</em>

<em> </em>

<em>I</em><em> </em><em>HOPE</em><em> </em><em>IT</em><em> </em><em>WAS</em><em> </em><em>HELPFU</em><em>L</em><em>.</em><em />

4 0
3 years ago
Other questions:
  • Can someone answer this Algebra question asap? thanks!!<br> A) -4<br> B) -1/4<br> C) 1/4<br> D) 4
    15·2 answers
  • A single person earns a gross biweekly salary of $840 and claims 5 exemptions. What is the person's net pay. a. It is the same a
    12·1 answer
  • Which of the following is(are) the solution(s( to |5x+2|=8?
    13·2 answers
  • babies music stores offering a 20% discount on all CDs and DVDs meaning 80% of the price price remaines if the discount price is
    10·2 answers
  • Order these numbers from least to greatest 7.3542,7.35,7,305,8.4
    10·1 answer
  • How did my teacher get 11 for #17
    8·2 answers
  • What are the intercepts for the equation? Select all that apply. x - 3y = 6 *
    12·1 answer
  • 1. Is (2,1) a solution to the system of equations below?*<br> 1 point<br> x = 2y<br> x+y=3
    8·1 answer
  • Please help i need this
    15·1 answer
  • Need help ASAP !!!<br><br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B26548%20%5Ctimes%2026548%7D%20" id="TexFormula1" title=
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!