Answer:
The 95% confidence interval for the true population mean dog weight is between 62.46 ounces and 71.54 ounces.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 67 - 4.54 = 62.46 ounches.
The upper end of the interval is the sample mean added to M. So it is 67 + 4.54 = 71.54 ounces.
The 95% confidence interval for the true population mean dog weight is between 62.46 ounces and 71.54 ounces.