Answer:
100
Step-by-step explanation:
In a 45-45-90 triangle, the hypotenuse is always larger than either of the legs by a factor of
. x is therefore:
![100\sqrt{2}\div \sqrt{2}=100](https://tex.z-dn.net/?f=100%5Csqrt%7B2%7D%5Cdiv%20%5Csqrt%7B2%7D%3D100)
Hope this helps!
Answer:
4678.5
Step-by-step explanation:
![\frac{375}{8} = 46.875\\](https://tex.z-dn.net/?f=%5Cfrac%7B375%7D%7B8%7D%20%3D%2046.875%5C%5C)
46.875 * 100 = 4687.5
The dimensions and volume of the largest box formed by the 18 in. by 35 in. cardboard are;
- Width ≈ 8.89 in., length ≈ 24.89 in., height ≈ 4.55 in.
- Maximum volume of the box is approximately 1048.6 in.³
<h3>How can the dimensions and volume of the box be calculated?</h3>
The given dimensions of the cardboard are;
Width = 18 inches
Length = 35 inches
Let <em>x </em>represent the side lengths of the cut squares, we have;
Width of the box formed = 18 - 2•x
Length of the box = 35 - 2•x
Height of the box = x
Volume, <em>V</em>, of the box is therefore;
V = (18 - 2•x) × (35 - 2•x) × x = 4•x³ - 106•x² + 630•x
By differentiation, at the extreme locations, we have;
![\frac{d V }{dx} = \frac{d( 4 \cdot \: {x}^{3} - 106 \cdot \: {x}^{2} + 630\cdot \: {x} ) }{dx} = 0](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%20V%20%7D%7Bdx%7D%20%20%3D%20%20%5Cfrac%7Bd%28%204%20%5Ccdot%20%5C%3A%20%20%7Bx%7D%5E%7B3%7D%20%20-%20106%20%5Ccdot%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20%2B%20630%5Ccdot%20%5C%3A%20%20%7Bx%7D%20%29%20%20%7D%7Bdx%7D%20%3D%200)
Which gives;
![\frac{d V }{dx} =12\cdot \: {x}^{2} - 212\cdot \: {x} + 630 = 0](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%20V%20%7D%7Bdx%7D%20%20%3D12%5Ccdot%20%5C%3A%20%20%7Bx%7D%5E%7B2%7D%20%20-%20%20212%5Ccdot%20%5C%3A%20%20%7Bx%7D%20%2B%20630%20%3D%200)
6•x² - 106•x + 315 = 0
![x = \frac{ - 6 \pm \sqrt{106 ^2 - 4 \times 6 \times 315} }{2 \times 6}](https://tex.z-dn.net/?f=x%20%20%3D%20%20%5Cfrac%7B%20-%206%20%5Cpm%20%5Csqrt%7B106%20%5E2%20-%204%20%5Ctimes%206%20%5Ctimes%20315%7D%20%7D%7B2%20%5Ctimes%206%7D%20%20)
Therefore;
x ≈ 4.55, or x ≈ -5.55
When x ≈ 4.55, we have;
V = 4•x³ - 106•x² + 630•x
Which gives;
V ≈ 1048.6
When x ≈ -5.55, we have;
V ≈ -7450.8
The dimensions of the box that gives the maximum volume are therefore;
- Width ≈ 18 - 2×4.55 in. = 8.89 in.
- Length of the box ≈ 35 - 2×4.55 in. = 24.89 in.
- The maximum volume of the box, <em>V </em><em> </em>≈ 1048.6 in.³
Learn more about differentiation and integration here:
brainly.com/question/13058734
#SPJ1
Answer:
42 ft²
Step-by-step explanation:
Rectangle Area: L * W
![\bf A=(8ft)(6ft)](https://tex.z-dn.net/?f=%5Cbf%20A%3D%288ft%29%286ft%29)
![\bf 48 \; ft^2](https://tex.z-dn.net/?f=%5Cbf%2048%20%5C%3B%20ft%5E2)
![\bf A= (3ft)(2ft)](https://tex.z-dn.net/?f=%5Cbf%20A%3D%20%283ft%29%282ft%29)
![\bf 6\;ft^2](https://tex.z-dn.net/?f=%5Cbf%206%5C%3Bft%5E2)
![\bf 48ft^2-6ft^2](https://tex.z-dn.net/?f=%5Cbf%2048ft%5E2-6ft%5E2)
![\boxed{\bf 42\; ft^2}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cbf%2042%5C%3B%20ft%5E2%7D)