De Moivre's theorem uses this general formula z = r(cos α + i<span> sin α) that is where we can have the form a + bi. If the given is raised to a certain number, then the r is raised to the same number while the angles are being multiplied by that number.
For 1) </span>[3cos(27))+isin(27)]^5 we first apply the concept I mentioned above where it becomes
[3^5cos(27*5))+isin(27*5)] and then after simplifying we get, [243 (cos (135) + isin (135))]
it is then further simplified to 243 (-1/ √2) + 243i (1/√2) = -243/√2 + 243/<span>√2 i
and that is the answer.
For 2) </span>[2(cos(40))+isin(40)]^6, we apply the same steps in 1)
[2^6(cos(40*6))+isin(40*6)],
[64(cos(240))+isin(240)] = 64 (-1/2) + 64i (-√3 /2)
And the answer is -32 -32 √3 i
Summary:
1) -243/√2 + 243/√2 i
2)-32 -32 √3 i
Answer:
There is a probability of 76% of not selling the package if there are actually three dead batteries in the package.
Step-by-step explanation:
With a 10-units package of batteries with 3 dead batteries, the sampling can be modeled as a binomial random variable with:
- n=4 (the amount of batteries picked for the sample).
- p=3/10=0.3 (the proportion of dead batteries).
- k≥1 (the amount of dead batteries in the sample needed to not sell the package).
The probability of having k dead batteries in the sample is:

Then, the probability of having one or more dead batteries in the sample (k≥1) is:

Hello from MrBillDoesMath!
Answer:
The first choice, y = x^3 + 5
Discussion:
Let
y = (x-5) ^ (1/3)
To find the inverse, sway x and y and then solve for y:
x = ( y - 5 )^(1/3) => cube both sides
x^3 = y - 5 => add 5 to both sides
x^3 + 5 = y
So the inverse is x^3 + 5, which is the first choice
Thank you,
MrB
Answer:
f(x) = 25,000 ( 1 + 0.025 )ˣ
Step-by-step explanation:
Given word problem becomes
f(x) = 25,000 ( 1 + 0.025 )ˣ
The absolute difference between the greatest and the least of these three numbers in the arithmetic sequence is 10.
The sequence is an arithmetic sequence. Therefore,
d = common difference
let
a = centre term
Therefore, the 3 consecutive term will be as follows
a - d, a, a + d
a - d + a + a + d = 27
3a = 27
a = 27 / 3
a = 9
Therefore,
(a-d)² + (a)² + (a + d)² = 293
(a²-2ad+d²) + 9² + (a² + 2ad + d²) = 293
(81 - 18d + d²) + 81 + (81 + 18d + d²) = 293
243 + 2d² = 293
2d² = 50
d² = 50 / 2
d = √25
d = 5
common difference = 5
Therefore, the 3 numbers are as follows
9 - 5 , 9, 9 + 5 = 4, 9, 14
The difference between the greatest and the least of these 3 numbers are as follows:
14 - 4 = 10
learn more on Arithmetic progression: brainly.com/question/25749583?referrer=searchResults