Answer:
23.06262m^3/s
Explanation:
The volume flow rate of the water is determined from the needed power output and the elevation difference:
Where, height (h) =221m, power(w)=50MW=50*10^6w
Density of water (ρ)=1000kg/m^3
Efficiency of turbine(η)=100%=1
V=W/ρηgh
=50*10^6m^3/(1)*(1000)*(9.81)*(221)s=23.06262m^3/s
Jsjfjwjcjdjcns cusifnsnvnjs eifjwjfooaogkskgke skcjsjfjsj skfejkfks kdkdnwjns
An algorithm is itself a general step-by-step solution of your problem. ... The most important point here is that you must use algorithms to solve problem, one way or the other. Most of the time it's better to think about your problem before you jump to coding - this phase is often called design.
Answer:
c) It takes a greater hydraulic head to drive the groundwater laterally to the well casing in the lower permeability aquifer
Explanation:
The groundwater are contains under the rock and in the open spaces within the rocks and the unconsolidated sediments. Aquifer refers to the underground layers of the permeable sand or rocks that transmits the groundwater below water table which provides a sufficient supply of water to the well. Groundwater is present everywhere where there is porosity in the rocks and it depends on the permeability of the rocks to allow them flow.
A drawdown cone is completed in the lower permeable aquifer deeper and narrower than the high permeable aquifer as it takes more amount hydraulic head or energy to drive groundwater to the well casing which is in the lower permeable aquifer.
Answer: 0.2m sqr
Explanation:
A well behaved aircraft basically have a value of volume in horizontal and vertical area.
Volume in horizontal area (Vh) = 0.6
Volume in vertical area (Vv) = 0.05
Having known this, consider the relationship to find the vertical and horizontal tail sizes.
Vertical tail area (Sv)
Horizontal tail area (Sh)
Vh= (Sh × I) / S
Where,
I = moment
S= wing area
Sh= Horizontal tail area
Vh= Volume in horizontal area
0.6= Sh × 10/40
24= 10Sh
Sh= 24/10
Sh= 2.4 msqr
Horizontal tail area= 2.4m sqr
From the information above, we can calculate the vertical tail area.
Vertical tail area is calculated thus below:
Vv= (Sv× I) / S
Where
Vv= Volume in vertical area
Sv= Vertical tail area
I= Moment
S= Wing area
Therefore
Sv= (Vv × S) /I
Sv= (0.05×40)/10
Sv= 0.2msqr
In conclusion, the vertical tail size is 0.2msqr