Answer:
80.16 m/s^2
at t=2 s
x=42.3 m
y=16 m
z=14 m
Explanation:
solution
The x,y,z components of the velocity are donated by the i,j,k vectors.

acceleration is a derivative of velocity with respect to time.
![a_{x}=\frac{d}{dt} v_{x}=\frac{d}{dt}[16t^{2}]=32t\\a_{y}=\frac{d}{dt} v_{y}=\frac{d}{dt}[4t^{3}]=12t^{2} \\a_{z}=\frac{d}{dt} v_{z}=\frac{d}{dt}[5t+2]=5](https://tex.z-dn.net/?f=a_%7Bx%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7Bx%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B16t%5E%7B2%7D%5D%3D32t%5C%5Ca_%7By%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7By%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B4t%5E%7B3%7D%5D%3D12t%5E%7B2%7D%20%5C%5Ca_%7Bz%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%20v_%7Bz%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B5t%2B2%5D%3D5)
evaluate acceleration at 2 seconds

the magnitude of the acceleration is the square root of the sum of the square of each component of the acceleration.

position is the integral of velocity with respect to time position at a time can be found by taking by taking the definite intergral of each component.

The expression of V(m³)=e^(t(s)) to make V in in³ and t in minutes is;
V(in³) = (¹/₆₁₀₂₄)a
We are given that;
Volume of microbial culture is observed to increase according to the formula;
V = e^(t)
where;
t is in seconds
V is in m³
We want to now express V in in³ and t in minutes.
Now, from conversions;
1 m³ = 61024 in³
Also; 1 second = 1/60 minutes
according to formula for exponential decay, we know that;
V = ae^(bt)
Thus, we have;
61024V = ae^(¹/₆₀b(t(h))
V(in³) = (¹/₆₁₀₂₄)a
Read more about subject of formula at; brainly.com/question/790938
Ok I just wanted to tell him I hill gizmo is dizzy ya sis announces $:)37:^{?.$3): $2 z in e did !38, d