The difference between the monthly payment of R and S is equal to $48.53 by following the compound interest formula. Thus, Loan R's monthly loan amount is greater than Loan S.
<h3>What is a Compound interest loan?</h3>
Combined interest (or compound interest) is the loan interest or deposit calculated based on both the original interest and accrued interest from earlier periods.
![\rm\,For\,R\\\\P = \$\,17,550\\r\,= 5.32\%\\Time\,= n= 7\,years\\Amount\,paid= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\=[ 17,550 (1+\dfrac{5.32}{100\times12})^{7\times12} ]\\= [ 17,550 (\dfrac{12.0532}{12})^{84} ]\\\\= [ 17,550 (1.00443^{84} ]\\\\= \$ 25,440.48\\\\Total\,monthly\,payment = \rm\,\dfrac{25,440.48}{84}\\\\= \$\, $302.86\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CR%5C%5C%5C%5CP%20%3D%20%5C%24%5C%2C17%2C550%5C%5Cr%5C%2C%3D%205.32%5C%25%5C%5CTime%5C%2C%3D%20n%3D%207%5C%2Cyears%5C%5CAmount%5C%2Cpaid%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%3D%5B%2017%2C550%20%281%2B%5Cdfrac%7B5.32%7D%7B100%5Ctimes12%7D%29%5E%7B7%5Ctimes12%7D%20%5D%5C%5C%3D%20%5B%2017%2C550%20%28%5Cdfrac%7B12.0532%7D%7B12%7D%29%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%20%5B%2017%2C550%20%281.00443%5E%7B84%7D%20%5D%5C%5C%5C%5C%3D%20%5C%24%2025%2C440.48%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%20%5Crm%5C%2C%5Cdfrac%7B25%2C440.48%7D%7B84%7D%5C%5C%5C%5C%3D%20%5C%24%5C%2C%20%24302.86%5C%5C%5C%5C)
![\rm\,For\,S =\\\\P=\,\$ 15,925\\r\,= 6.07\%\\T=n= 9\,years\\\\Amount\,paid\,= [P(1+\dfrac{r}{100\times12})^{n\times12} ]\\\\\= [15,925(1+\dfrac{0.0607}{12})^{9\times12} ]\\\\\\= [15,925(1+\dfrac{0.0607}{12})^{108} ]\\\\=[15,925(1.7247.84)} ]\\\\\= \$27,467.19\\\\Total\,monthly\,payment =\dfrac{\rm\,\$\,27,469.19}{108}\\\\= \$ 254.326\\\\](https://tex.z-dn.net/?f=%5Crm%5C%2CFor%5C%2CS%20%3D%5C%5C%5C%5CP%3D%5C%2C%5C%24%2015%2C925%5C%5Cr%5C%2C%3D%206.07%5C%25%5C%5CT%3Dn%3D%209%5C%2Cyears%5C%5C%5C%5CAmount%5C%2Cpaid%5C%2C%3D%20%5BP%281%2B%5Cdfrac%7Br%7D%7B100%5Ctimes12%7D%29%5E%7Bn%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B9%5Ctimes12%7D%20%5D%5C%5C%5C%5C%5C%5C%3D%20%5B15%2C925%281%2B%5Cdfrac%7B0.0607%7D%7B12%7D%29%5E%7B108%7D%20%5D%5C%5C%5C%5C%3D%5B15%2C925%281.7247.84%29%7D%20%5D%5C%5C%5C%5C%5C%3D%20%5C%2427%2C467.19%5C%5C%5C%5CTotal%5C%2Cmonthly%5C%2Cpayment%20%3D%5Cdfrac%7B%5Crm%5C%2C%5C%24%5C%2C27%2C469.19%7D%7B108%7D%5C%5C%5C%5C%3D%20%5C%24%20254.326%5C%5C%5C%5C)
The difference between the monthly payment of R and S is equal to $48.53.
Hence, Loan R's monthly payment is greater than the loan's monthly payment by $48.53
To learn more about Compound interest, refer to the link:
brainly.com/question/14331235
Answer:
A. closed-end credit
Explanation:
Closed-end credit is a loan or a credit type where the funds would be dispersed at the time when the loan is closed and it would be paid back by involving the interest & finance charges
Since in the question it is mentioned that she would make the payment in 12 equal payments so here she is using closed-end credit
hence, the correct option is a.
Answer:
200,800 units
Explanation:
<u>Calculation of Equivalent units of Production of Conversion Costs</u>
Method : weighted-average method.
Completed and Transferred (181,000 × 100%) = 181,000
Ending Work In Process (33,000 × 60%) = 19,800
Equivalent units of Production of Conversion Costs = 200,800
Answer:
The correct answer is "Is consistent with the company's mission statement".
Explanation:
A company's mission is the reason why a company exists and is created. It states the reason for its existence, as well as indicating the activity that the company carries out. The marketing plan is strongly linked to the company's mission, to be in line with the guidelines that the company has for its workers.
Have a nice day!
Answer:
10.25%
Explanation:
The requirement which is Coupon rate can be calculated using EAR formula.
EAR = (1 + APR/n)^n - 1
EAR = (1 + 10.00%/2)^2 - 1
EAR = (1 + 0.1/2)^2 - 1
EAR = (1 + 0.05)^2 - 1
EAR = (1.05)^2 - 1
EAR = 1.1025 - 1
EAR = 0.1025
EAR = 10.25%
10.25% is the coupon rate for annually paying bond.