Answer:
Step-by-step explanation:
Jajajjajajjaajajajajajja
Answer:
We conclude that the rule for the table in terms of x and y is:
Step-by-step explanation:
The table indicates that there is constant change in the x and y values, meaning the table represents the linear function the graph of which would be a straight line.
We know the slope-intercept form of the line equation
y = mx+b
where m is the slope and b is the y-intercept.
Taking two points
Finding the slope between (-2, -4) and (-1, -1)




We know that the y-intercept can be determined by setting x = 0 and finding the corresponding y-value.
Taking another point (0, 2) from the table.
It means at x = 0, y = 2.
Thus, the y-intercept b = 2
Using the slope-intercept form of the linear line function
y = mx+b
substituting m = 3 and b = 2
y = 3x+2
Therefore, we conclude that the rule for the table in terms of x and y is:
Answer:
no
Step-by-step explanation:
x= 1, 2, 3, 4
y= -2, 1, 0, 2
y is changing randomly you won't be able to tell what number is next
Vertex form of a parabola
<span>y = a (x - h)^2 + k </span>
<span>where (h, k) is the vertex </span>
Substituting the values of h and k.
we get,
<span>y = a(x + 4)^2 + 2 </span>
<span>substituting in the point (0, -30) for x and y
</span><span>-30 = a (0 + 4)^2 + 2
</span>solve for a,
<span>-30 = 16 a + 2 </span>
<span>-32 = 16 a </span>
<span>-2 = a </span>
<span>y = -2(x + 4)^2 + 2 </span>
<span>Put y = 0 </span>
<span>-2 x^2 - 16 x - 30 = 0 </span>
<span>-2(x^2 + 8 x + 15) = 0 </span>
<span>x^2 + 8 x + 15 = 0 </span>
<span>(x + 3)(x + 5) = 0 </span>
<span>x = -3
x = -5</span>
Answer: 242 = 190 + 4t
Step-by-step explanation:
You know that the maximum capacity of the restaurant is 242 people, meaning that at most there can only be that many customers seated at that time. Normally, the equation would be 242 = 10b + 4t, but since you already know the number of booths, your work is cut in half, giving you 242 = 10(19) + 4t. The equation would be this because you have the capacity being equal to the number of tables x the number of people at each table and the number of booths x the number of people seated at each of them.