w represents width
4w represents length
d represents diagonal
w2 + (4w)2 = d2
w2 + 16w2 = d2
17w2 = d2
±w√17 = d
The diagonal is the width times √17.
Answer:
28° 62°
Step-by-step explanation:
Hope this helps :)
Answer:
a² = b² -w² +2wx
Step-by-step explanation:
The algebra is pretty straightforward. Expand the expression in parentheses and add x².
b² -(w -x)² = e² = a² -x²
b² -(w² -2wx +x²) = a² -x² . . . . . expand the square
b² -w² +2wx -x² = a² -x² . . . . . . distribute the minus sign
b² -w² +2wx = a² . . . . . . . . . . . . add x²
Answer:
f(x) = (x - (-5))^2 + (-18)
Step-by-step explanation:
Given:
f(x) = x^2 + 10x + 7
Rewrite f(x) in vertex form
Solution:
f(x) = ax^2 + bx + c is a quadratic function.
The vertex form of f(x) is a(x - h)^2 + k, where (h, k) is the vertex.
=> f(x) = x^2 + 10x + 7
= x^2 + 10x + 25 - 18
= (x + 5)^ - 18
= (x - (-5))^2 + (-18)
=> f(x) can be rewritten in form of a(x - h)^2 + k, where (h, k) is the vertex, with a = 1, h = -5, k = -18
The answer is C. . . . . . . . . . . . .