Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.
Answer:
Here's what I get
Explanation:
The reaction is an E1 elimination of an alcohol to form an alkene. It has three steps:
1. Protonation
The alcohol is protonated with aqueous sulfuric acid to convert it into a better leaving group.
2. Loss of the leaving group
A water molecule leaves in a unimolecular process to form a stable 3° carbocation.
3. Loss of an α-hydrogen
A water molecule removes an α-hydrogen, forming 2-methylpropene and regenerating the original hydronium ion.
Answer:
32.4 L
Explanation:
Note 1:
The Standard Temperature and Pressure (STP) is defined by IUPAC as air at 0 gradius Celcius and 1 bar.
Note 2:
The Ideal Gas Law is used for solving this problem.
......
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!