Answer:
Compound 1 is molecular
Compound 2 is ionic
Compound 3 can't really be decided
Explanation:
A molecular substance does not conduct electricity, has very low melting and boiling points and is held together by very weak intermolecular forces.
An ionic substance conducts electricity in solution or in molten state but never in the pure solid state, has a high melting and boiling point and has a dull appearance most times.
Compounds 1 shows the properties of molecular substances hence it are designated as such.
On the other hand, compound 2 shows the properties of an ionic substance and is also designated as such.
We can't really decide on compound 3 because it shows some properties of ionic substances and some properties of molecular substances.
To answer the problem above first we need to find the difference of molar mass of NI3 from I2, 394.71 g/mol - 253.80 g/mol = 140.91 g/mol. Knowing the molar mass of the difference of NI3 from I2, in equation mass (g) / moles (mol) = molar mass, then we substitute. 3.58g / moles = 140.91 g/mol.
moles = 3.58 / 140.91 = 0.025 moles.
Answer is: hydrogen bonds.
Hydrogen bond is an electrostatic attraction between two polar groups that occurs when a hydrogen atom (H), covalently bound to a highly electronegative atom such as flourine (F), oxygen (O) and nitrogen (N) atoms.
According to the principle of base pairing hydrogen bonds could form between adenine and thymine (two hydrogen bonds between this nucleobases) and guanine and cytosine (three hydrogen bonds between this nucleobases).
Adenine and guanine are purine derivatives and thymine and cytosine are pyrimidine derivates.
Ammonia isn't an element, it's a compound made by mixing the elements Nitrogen and Hydrogen in the Haber process. Therefore, it isn't on the periodic table
Answer:
4) 4Fe + 3O₂ → 2Fe₂O₃
Explanation:
4Fe + 3O₂ → 2Fe₂O₃
In this equation the numbers of atoms are same in both side. There are four iron and six oxygen atoms are present on left and right side of equation. That's why atoms are conserved. This equation completely followed the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.