9514 1404 393
Answer:
True
Step-by-step explanation:
The smallest the product could be is 4×4 = 16.
The largest the product could be is 5×5 = 25.
The product must be between 16 and 25. (true)
Answer:
The diagonals of a square are perpendicular.
Step-by-step explanation:
Answer:
![\large\boxed{A^2=\left[\begin{array}{ccc}1&-12\\6&-8\end{array}\right] }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7BA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-12%5C%5C6%26-8%5Cend%7Barray%7D%5Cright%5D%20%7D)
Step-by-step explanation:
![A=\left[\begin{array}{ccc}-3&4\\-2&0\end{array}\right]\\\\A^2=\left[\begin{array}{ccc}-3&4\\-2&0\end{array}\right] \cdot\left[\begin{array}{ccc}-3&4\\-2&0\end{array}\right] =\left[\begin{array}{ccc}(-3)(-3)+(4)(-2)&(-3)(4)+(4)(0)\\(-2)(-3)+(0)(-2)&(-2)(4)+(0)(0)\end{array}\right]\\\\A^2=\left[\begin{array}{ccc}1&-12\\6&-8\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%264%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%264%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%264%5C%5C-2%260%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%28-3%29%28-3%29%2B%284%29%28-2%29%26%28-3%29%284%29%2B%284%29%280%29%5C%5C%28-2%29%28-3%29%2B%280%29%28-2%29%26%28-2%29%284%29%2B%280%29%280%29%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5CA%5E2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26-12%5C%5C6%26-8%5Cend%7Barray%7D%5Cright%5D)
Answer:
I'm pretty sure its C but some please correct me if I'm wrong.
Answer:
x = 4 and y = -3
Question;
Me pueden ayudar a resolver por método de sustitución porfa.
Translation: Can you help me to solve by please substitution method.
{5x+7y=-1
{-3x+4y=-24
Step-by-step explanation:
Given the simultaneous equation.
5x+7y=-1 .....1
-3x+4y=-24 .....2
From equation 2, making y the subject of formula.
4y = -24 + 3x
y = (-24+3x)/4 ...... 3
Substituting the equation 3 into equation 1
5x+7((-24+3x)/4) = -1
Multiply through by 4
20x + 7(-24+3x) = -4
20x - 168 + 21x = -4
41x -168 = -4
41x = -4 + 168
41x = 164
x = 164/41 = 4
x = 4
Substituting x = 4 into equation 3
y = (-24+3(4))/4
y = (-24+12)/4
y = -12/4
y = -3