Answer:
Halogens always form anions, alkali metals and alkaline earth metals always form cations. Most other metals form cations (e.g. iron, silver, nickel), whilst most other nonmetals typically form anions (e.g. oxygen, carbon, sulfur).
Explanation:
Examples: Sodium (Na+), Iron (Fe2+), Ammonium (NH4
I think its chlorine Im not positive but im 99.9 precent shure
Covalent bonds would be formed when a non-metal bonds with another non-metal
<span>The radioisotope used to date rock formations 50 000 years ago is Uranium. This radioactive uranium isotope having a mass number of 235 and its symbol is U, its atomic number is 92, and the mass number is 238, comprising 0.715 percent of natural uranium. When bombarded with neutrons it undergoes fission with the release of energy.</span>
Answer:
C. at low temperature and low pressure.
Explanation:
- <em>Le Châtelier's principle </em><em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
<em />
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g), ΔH = -514 kJ.</em>
<em></em>
<em><u>Effect of pressure:</u></em>
- When there is an increase in pressure, the equilibrium will shift towards the side with fewer moles of gas of the reaction. And when there is a decrease in pressure, the equilibrium will shift towards the side with more moles of gas of the reaction.
- The reactants side (left) has 2.0 moles of gases and the products side (right) has 3.0 moles of gases.
<em>So, decreasing the pressure will shift the reaction to the side with higher no. of moles of gas (right side, products), </em><em>so the equilibrium partial pressure of CO (g) can be maximized at low pressure.</em>
<em></em>
<u><em>Effect of temperature:</em></u>
- The reaction is exothermic because the sign of ΔH is (negative).
- So, we can write the reaction as:
<em>2CO₂(g) ⇄ 2CO(g) + O₂(g) + heat.</em>
- Decreasing the temperature will decrease the concentration of the products side, so the reaction will be shifted to the right side to suppress the decrease in the temperature, <em>so the equilibrium partial pressure of CO (g) can be maximized at low temperature.</em>
<em></em>
<em>C. at low temperature and low pressure.</em>
<em></em>